Department of Physics, University of California, San Diego, La Jolla, CA, USA.
Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
Mol Syst Biol. 2021 Dec;17(12):e10505. doi: 10.15252/msb.202110505.
Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.
游动细胞可以使用和切换不同的迁移模式。在这里,我们使用牵引力显微镜和肌动蛋白和肌球蛋白的荧光标记来量化和关联在 Dictyostelium discoideum 细胞中移动并在角质细胞样扇形、振荡和阿米巴样模式之间切换的牵引力模式和细胞骨架分布。我们发现细胞骨架成分的波动动力学对牵引力模式、细胞形态和迁移模式具有至关重要的影响。此外,我们发现扇形细胞可以表现出两种不同的推进机制,每种机制都有独特的牵引力模式。最后,牵引力模式可以使用计算模型来再现,该模型使用实验确定的肌动蛋白和肌球蛋白力的时空分布以及粘性细胞骨架网络。我们的结果表明,细胞运动可以通过该网络的流动与基质之间的摩擦产生。