Aykanat Aylin, Jones Christopher G, Cline Evan, Stolz Robert M, Meng Zheng, Nelson Hosea M, Mirica Katherine A
Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
ACS Appl Mater Interfaces. 2021 Dec 22;13(50):60306-60318. doi: 10.1021/acsami.1c14453. Epub 2021 Dec 13.
This paper describes the design, synthesis, characterization, and performance of a novel semiconductive crystalline coordination network, synthesized using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligands interconnected with bismuth ions, toward chemiresistive gas sensing. Bi(HHTP) exhibits two distinct structures upon hydration and dehydration of the pores within the network, Bi(HHTP)-α and Bi(HHTP)-β, respectively, both with unprecedented network topology (2,3-c and 3,4,4,5-c nodal net stoichiometry, respectively) and unique corrugated coordination geometries of HHTP molecules held together by bismuth ions, as revealed by a crystal structure resolved via microelectron diffraction (MicroED) (1.00 Å resolution). Good electrical conductivity (5.3 × 10 S·cm) promotes the utility of this material in the chemical sensing of gases (NH and NO) and volatile organic compounds (VOCs: acetone, ethanol, methanol, and isopropanol). The chemiresistive sensing of NO and NH using Bi(HHTP) exhibits limits of detection 0.15 and 0.29 parts per million (ppm), respectively, at low driving voltages (0.1-1.0 V) and operation at room temperature. This material is also capable of exhibiting unique and distinct responses to VOCs at ppm concentrations. Spectroscopic assessment via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopic methods (i.e., attenuated total reflectance-infrared spectroscopy (ATR-IR) and diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS)), suggests that the sensing mechanisms of Bi(HHTP) to VOCs, NO, and NH comprise a complex combination of steric, electronic, and protic properties of the targeted analytes.
本文描述了一种新型半导体晶体配位网络的设计、合成、表征及性能,该网络由与铋离子互连的2,3,6,7,10,11-六羟基三亚苯(HHTP)配体合成,用于化学电阻式气体传感。Bi(HHTP)在网络内孔水化和脱水时分别呈现两种不同结构,即Bi(HHTP)-α和Bi(HHTP)-β,二者均具有前所未有的网络拓扑结构(分别为2,3-c和3,4,4,5-c节点网络化学计量比)以及由铋离子连接的HHTP分子独特的波纹状配位几何结构,这是通过微电子衍射(MicroED)解析的晶体结构(分辨率为1.00 Å)揭示的。良好的电导率(5.3×10 S·cm)促进了该材料在气体(NH和NO)及挥发性有机化合物(VOCs:丙酮、乙醇、甲醇和异丙醇)化学传感中的应用。使用Bi(HHTP)对NO和NH进行化学电阻传感时,在低驱动电压(0.1 - 1.0 V)和室温操作下,检测限分别为百万分之0.15和0.29。该材料在ppm浓度下对VOCs也能表现出独特且明显的响应。通过X射线光电子能谱(XPS)和傅里叶变换红外光谱方法(即衰减全反射红外光谱(ATR-IR)和漫反射红外傅里叶变换光谱(DRIFTS))进行的光谱评估表明,Bi(HHTP)对VOCs、NO和NH的传感机制包括目标分析物的空间、电子和质子性质的复杂组合。