Hesabizadeh Tina, Jebari Nessrine, Madouri Ali, Hallais Géraldine, Clark Trevor E, Behura Sanjay K, Herth Etienne, Guisbiers Grégory
Department of Physics & Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States.
Center of Nanosciences & Nanotechnologies, CNRS UMR 9001, University of Paris-Saclay, Paris 91120, France.
ACS Omega. 2021 Nov 22;6(48):33130-33140. doi: 10.1021/acsomega.1c05498. eCollection 2021 Dec 7.
Transition-metal oxides such as cupric and cuprous oxides are strongly correlated materials made of earth-abundant chemical elements displaying energy band gaps of around 1.2 and 2.1 eV. The ability to design nanostructures of cupric and cuprous oxide semiconductors with in situ phase change and morphological transition will benefit several applications including photovoltaic energy conversion and photoelectrochemical water splitting. Here, we have developed a physicochemical route to synthesize copper oxide nanostructures, enabling the phase change of cupric oxide into cuprous oxide using an electric field of 10 V/m in deionized water via a new synthetic design protocol called electric-field-assisted pulsed laser ablation in liquids (EFA-PLAL). The morphology of the nanostructures can also be tuned from a sphere of ∼20 nm to an elongated leaf of ∼3 μm by controlling the intensity of the applied electric field. Futuristically, the materials chemistry occurring during the EFA-PLAL synthesis protocol developed here can be leveraged to design various strongly correlated nanomaterials and heterostructures of other 3d transition-metal oxides.
诸如氧化铜和氧化亚铜之类的过渡金属氧化物是由地球上储量丰富的化学元素构成的强关联材料,其显示出的能带隙约为1.2电子伏特和2.1电子伏特。能够设计出具有原位相变和形态转变的氧化铜和氧化亚铜半导体纳米结构,将有利于包括光伏能量转换和光电化学水分解在内的多种应用。在此,我们开发了一种物理化学途径来合成氧化铜纳米结构,通过一种名为液体中电场辅助脉冲激光烧蚀(EFA-PLAL)的新合成设计方案,在去离子水中利用10伏/米的电场使氧化铜转变为氧化亚铜。通过控制所施加电场的强度,纳米结构的形态也可以从约20纳米的球体调整为约3微米的细长叶片状。从未来发展来看,此处开发的EFA-PLAL合成方案中发生的材料化学过程可用于设计各种强关联纳米材料以及其他3d过渡金属氧化物的异质结构。