Suppr超能文献

在一个受到多因素全球变化实验(包括升高的 CO2、变暖以及干旱)影响的高山草原中,地下氮循环的对比驱动因素。

Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO , warming, and drought.

机构信息

Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Vienna, Austria.

INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, France.

出版信息

Glob Chang Biol. 2022 Apr;28(7):2425-2441. doi: 10.1111/gcb.16035. Epub 2022 Jan 10.

Abstract

Depolymerization of high-molecular weight organic nitrogen (N) represents the major bottleneck of soil N cycling and yet is poorly understood compared to the subsequent inorganic N processes. Given the importance of organic N cycling and the rise of global change, we investigated the responses of soil protein depolymerization and microbial amino acid consumption to increased temperature, elevated atmospheric CO , and drought. The study was conducted in a global change facility in a managed montane grassland in Austria, where elevated CO (eCO ) and elevated temperature (eT) were stimulated for 4 years, and were combined with a drought event. Gross protein depolymerization and microbial amino acid consumption rates (alongside with gross organic N mineralization and nitrification) were measured using N isotope pool dilution techniques. Whereas eCO  showed no individual effect, eT had distinct effects which were modulated by season, with a negative effect of eT on soil organic N process rates in spring, neutral effects in summer, and positive effects in fall. We attribute this to a combination of changes in substrate availability and seasonal temperature changes. Drought led to a doubling of organic N process rates, which returned to rates found under ambient conditions within 3 months after rewetting. Notably, we observed a shift in the control of soil protein depolymerization, from plant substrate controls under continuous environmental change drivers (eT and eCO ) to controls via microbial turnover and soil organic N availability under the pulse disturbance (drought). To the best of our knowledge, this is the first study which analyzed the individual versus combined effects of multiple global change factors and of seasonality on soil organic N processes and thereby strongly contributes to our understanding of terrestrial N cycling in a future world.

摘要

高分子量有机氮 (N) 的解聚是土壤 N 循环的主要瓶颈,但与随后的无机 N 过程相比,人们对其了解甚少。考虑到有机 N 循环的重要性以及全球变化的兴起,我们研究了土壤蛋白解聚和微生物氨基酸消耗对温度升高、大气 CO 升高和干旱的响应。该研究在奥地利管理高山草原中的一个全球变化设施中进行,在那里,大气 CO 升高 (eCO ) 和温度升高 (eT) 被刺激了 4 年,并与干旱事件相结合。使用 N 同位素池稀释技术测量了总蛋白解聚和微生物氨基酸消耗速率(以及总有机 N 矿化和硝化作用)。虽然 eCO 没有单独的影响,但 eT 有明显的影响,受季节调节,eT 对春季土壤有机 N 过程速率有负向影响,夏季中性影响,秋季正向影响。我们将这归因于基质可用性的变化和季节性温度变化的结合。干旱导致有机 N 过程速率增加了一倍,在重新润湿后 3 个月内恢复到环境条件下的速率。值得注意的是,我们观察到土壤蛋白解聚控制方式发生了转变,从连续环境变化驱动因素(eT 和 eCO )下的植物基质控制转变为脉冲干扰(干旱)下的微生物周转和土壤有机 N 可用性控制。据我们所知,这是第一项分析多种全球变化因素及其季节性对土壤有机 N 过程的单独和综合影响的研究,从而为我们了解未来世界陆地 N 循环做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1f/9306501/83552f7ab7ca/GCB-28-2425-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验