Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China.
Adv Sci (Weinh). 2022 Feb;9(5):e2104270. doi: 10.1002/advs.202104270. Epub 2021 Dec 16.
Soft actuators with sensing capabilities are important in intelligent robots and human-computer interactions. However, present perceptive actuating systems rely on the integration of multiple functional units with complex circuit design. Here, a new-type pressure-perceptive actuator is reported, which integrates functions of sensing, actuating, and decision making at material level without complex combination. The actuator is composed of an actuating unit and a pressure-sensing unit, both of which are fabricated by carbon nanotube (CNT), silk, and polymer composite. On the one hand, the actuating unit can be driven by low voltages (<13 V), owing to a Joule-heating effect. On the other hand, the current passing the pressure-sensing unit can be controlled by tactile pressure. In the integrated actuator, it is able to control the deformation amplitude of actuating unit by applying different pressures on the pressure-sensing unit. A portable tactile-activated gripper is fabricated to operate an object through pressure control, demonstrating its application in tactile soft robots. Finally, three visual logic gates (AND, OR, and NOT) are proposed, which convert "tactile" inputs into "visible" deformation outputs, using the CNT-silk-based material for sensing and actuating in the decision-making process. This study provides a new path for intelligent soft robots and new-generation logic devices.
具有传感能力的软致动器在智能机器人和人机交互中非常重要。然而,现有的感知致动系统依赖于多个具有复杂电路设计的功能单元的集成。在这里,报道了一种新型压力感知致动器,它在材料层面上集成了传感、致动和决策功能,而无需复杂的组合。该致动器由致动单元和压力传感单元组成,两者均由碳纳米管(CNT)、丝和聚合物复合材料制成。一方面,由于焦耳加热效应,致动单元可以在低电压(<13 V)下驱动。另一方面,通过触觉压力可以控制通过压力传感单元的电流。在集成致动器中,可以通过在压力传感单元上施加不同的压力来控制致动单元的变形幅度。制作了一个便携式触觉激活夹爪,通过压力控制来操作物体,展示了其在触觉软机器人中的应用。最后,提出了三个可视化逻辑门(与、或和非),它们使用基于 CNT-丝的材料在决策过程中进行传感和致动,将“触觉”输入转换为“可见”的变形输出。本研究为智能软机器人和新一代逻辑器件提供了新的途径。