Suppr超能文献

使用生成对抗网络从电子病历中综合时间序列伤口预后因素。

Synthesizing time-series wound prognosis factors from electronic medical records using generative adversarial networks.

机构信息

Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.

Department of Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.

出版信息

J Biomed Inform. 2022 Jan;125:103972. doi: 10.1016/j.jbi.2021.103972. Epub 2021 Dec 14.

Abstract

Wound prognostic models not only provide an estimate of wound healing time to motivate patients to follow up their treatments but also can help clinicians to decide whether to use a standard care or adjuvant therapies and to assist them with designing clinical trials. However, collecting prognosis factors from Electronic Medical Records (EMR) of patients is challenging due to privacy, sensitivity, and confidentiality. In this study, we developed time series medical generative adversarial networks (GANs) to generate synthetic wound prognosis factors using very limited information collected during routine care in a specialized wound care facility. The generated prognosis variables are used in developing a predictive model for chronic wound healing trajectory. Our novel medical GAN can produce both continuous and categorical features from EMR. Moreover, we applied temporal information to our model by considering data collected from the weekly follow-ups of patients. Conditional training strategies were utilized to enhance training and generate classified data in terms of healing or non-healing. The ability of the proposed model to generate realistic EMR data was evaluated by TSTR (test on the synthetic, train on the real), discriminative accuracy, and visualization. We utilized samples generated by our proposed GAN in training a prognosis model to demonstrate its real-life application. Using the generated samples in training predictive models improved the classification accuracy by 6.66-10.01% compared to the previous EMR-GAN. Additionally, the suggested prognosis classifier has achieved the area under the curve (AUC) of 0.875, 0.810, and 0.647 when training the network using data from the first three visits, first two visits, and first visit, respectively. These results indicate a significant improvement in wound healing prediction compared to the previous prognosis models.

摘要

伤口预后模型不仅可以估计伤口愈合时间,激励患者接受治疗,还可以帮助临床医生决定是否使用标准治疗或辅助治疗,并帮助他们设计临床试验。然而,由于隐私、敏感性和机密性,从患者的电子病历 (EMR) 中收集预后因素具有挑战性。在这项研究中,我们开发了时间序列医学生成对抗网络 (GAN),使用在专门的伤口护理机构的常规护理中收集的非常有限的信息来生成合成的伤口预后因素。生成的预后变量用于开发慢性伤口愈合轨迹的预测模型。我们的新型医学 GAN 可以从 EMR 中生成连续和分类特征。此外,我们通过考虑从患者每周随访中收集的数据,将时间信息应用到我们的模型中。通过使用条件训练策略,我们可以增强训练并根据愈合或未愈合生成分类数据。通过 TSTR(在合成数据上测试,在真实数据上训练)、判别精度和可视化来评估所提出的模型生成真实 EMR 数据的能力。我们利用所提出的 GAN 生成的样本在训练预后模型中展示其实际应用。与之前的 EMR-GAN 相比,使用生成的样本进行训练可以将预测模型的分类精度提高 6.66-10.01%。此外,当使用前三次就诊、前两次就诊和首次就诊的数据训练网络时,建议的预后分类器的曲线下面积 (AUC) 分别为 0.875、0.810 和 0.647。这些结果表明,与之前的预后模型相比,伤口愈合预测有了显著的提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验