Yeshiva University, Department of Biology, 500 W 185th Street, New York, NY, 10033, USA.
Montefiore Medical Center, 1695 Eastchester Road Bronx, New York, 10461, USA.
Comput Biol Med. 2022 Feb;141:105110. doi: 10.1016/j.compbiomed.2021.105110. Epub 2021 Dec 9.
KRAS mutation is prevalent in around 30% of all cancers and is an undruggable molecular target. Of seven mutations at codon 12 and 13, only one, the G12C mutant is finally proven to be druggable, as evidenced by the recent USFDA approval of sotorasib. Investigation of other small molecules targeting G12C and G12D are undergoing clinical trials. Understanding the fine structural details is a prerequisite to design specific inhibitors which also requires in depth molecular exploration. We used bioinformatics as a tool to analyze the KRAS protein's GTP (guanosine triphosphate) binding dynamics when mutated. KRAS undergoes significant conformational changes, affecting GTP binding conformation within the active site pocket of KRAS due to high torsional strains, hydrophobicity, and altered Switch I and II regions. GTP molecule for wildtype had a low torsional strain of 10.71, and is the only molecule, in comparison to KRAS mutant bound GTP, to have a glycine at position 10 interacting with its nitrogenous base. All mutant KRAS proteins lacked the interaction of glycine with the nitrogenous base. The binding affinity of wildtype (WT) KRAS for the gamma-phosphate was lower in scoring compared to the mutated KRAS protein in multiple analyses. This study provides an insight to the GTP-KRAS protein binding details that are important to define parameters required to be explored to design the appropriate inhibitor for each different type of mutant KRAS protein.
KRAS 突变在所有癌症中约占 30%,是一种不可成药的分子靶点。在 12 号和 13 号密码子的 7 种突变中,只有一种突变,即 G12C 突变,最终被证明是可成药的,这一点已被美国食品和药物管理局最近批准的索托拉西布所证实。目前正在进行针对 G12C 和 G12D 的其他小分子的临床试验。了解精细的结构细节是设计特异性抑制剂的前提,这也需要深入的分子探索。我们使用生物信息学作为工具,分析了 KRAS 蛋白在突变时的 GTP(三磷酸鸟苷)结合动力学。由于高扭转应变、疏水性和改变的 Switch I 和 II 区域,KRAS 会发生显著的构象变化,影响 KRAS 活性位点口袋内的 GTP 结合构象。野生型的 GTP 分子扭转应变为 10.71,是唯一一种在与 KRAS 突变体结合的 GTP 分子中,位于 10 位的甘氨酸与它的含氮碱基相互作用的分子。所有突变的 KRAS 蛋白都缺乏甘氨酸与含氮碱基的相互作用。与突变型 KRAS 蛋白相比,野生型(WT)KRAS 对 γ-磷酸的结合亲和力在多次分析中的评分较低。这项研究提供了对 GTP-KRAS 蛋白结合细节的深入了解,这对于确定设计每种不同类型的突变 KRAS 蛋白的合适抑制剂所需探索的参数非常重要。