纵向数据分析模型预测心血管疾病风险:方法学综述。
Modelling of longitudinal data to predict cardiovascular disease risk: a methodological review.
机构信息
Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, L7 8TX, UK.
Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
出版信息
BMC Med Res Methodol. 2021 Dec 18;21(1):283. doi: 10.1186/s12874-021-01472-x.
OBJECTIVE
The identification of methodology for modelling cardiovascular disease (CVD) risk using longitudinal data and risk factor trajectories.
METHODS
We screened MEDLINE-Ovid from inception until 3 June 2020. MeSH and text search terms covered three areas: data type, modelling type and disease area including search terms such as "longitudinal", "trajector*" and "cardiovasc*" respectively. Studies were filtered to meet the following inclusion criteria: longitudinal individual patient data in adult patients with ≥3 time-points and a CVD or mortality outcome. Studies were screened and analyzed by one author. Any queries were discussed with the other authors. Comparisons were made between the methods identified looking at assumptions, flexibility and software availability.
RESULTS
From the initial 2601 studies returned by the searches 80 studies were included. Four statistical approaches were identified for modelling the longitudinal data: 3 (4%) studies compared time points with simple statistical tests, 40 (50%) used single-stage approaches, such as including single time points or summary measures in survival models, 29 (36%) used two-stage approaches including an estimated longitudinal parameter in survival models, and 8 (10%) used joint models which modelled the longitudinal and survival data together. The proportion of CVD risk prediction models created using longitudinal data using two-stage and joint models increased over time.
CONCLUSIONS
Single stage models are still heavily utilized by many CVD risk prediction studies for modelling longitudinal data. Future studies should fully utilize available longitudinal data when analyzing CVD risk by employing two-stage and joint approaches which can often better utilize the available data.
目的
确定使用纵向数据和风险因素轨迹来建模心血管疾病(CVD)风险的方法。
方法
我们从 2020 年 6 月 3 日之前的 MEDLINE-Ovid 中筛选了数据。MeSH 和文本搜索词涵盖了三个领域:数据类型、建模类型和疾病领域,分别使用了“纵向”、“轨迹”和“心血管”等搜索词。研究被过滤以满足以下纳入标准:在至少 3 个时间点有≥1 个 CVD 或死亡率结局的成年患者的纵向个体患者数据。由一名作者进行研究筛选和分析。如有任何疑问,将与其他作者进行讨论。通过观察假设、灵活性和软件可用性对确定的方法进行了比较。
结果
从最初的 2601 项研究中,共筛选出 80 项研究。确定了四种用于建模纵向数据的统计方法:3(4%)项研究使用简单的统计检验比较时间点,40(50%)项研究使用单阶段方法,例如将单个时间点或生存模型中的汇总测量值纳入其中,29(36%)项研究使用两阶段方法,包括在生存模型中估计纵向参数,8(10%)项研究使用联合模型,联合模型一起建模纵向和生存数据。使用两阶段和联合模型使用纵向数据创建 CVD 风险预测模型的比例随着时间的推移而增加。
结论
许多 CVD 风险预测研究仍在大量使用单阶段模型来建模纵向数据。未来的研究在分析 CVD 风险时应充分利用现有的纵向数据,采用两阶段和联合方法,这些方法通常可以更好地利用现有数据。