Suppr超能文献

金属、金属氧化物和有机纳米粒子对植物生理学的影响。

Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology.

机构信息

Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.

Department of Biotechnology, Quaid I Azam University, Islamabad, 45320, Pakistan.

出版信息

Chemosphere. 2022 Mar;290:133329. doi: 10.1016/j.chemosphere.2021.133329. Epub 2021 Dec 16.

Abstract

Nanotechnology is a research area that has experienced tremendous development given the enormous potential of nanoparticles (NPs) to influence almost all industries and conventional processes. NPs have been extensively used in agriculture to improve plant physiology, production, and nutritional values of plant-based products. The large surface area and small size are some of the desired attributes for NPs that can substantially ameliorate plants' physiological processes, thereby improving crop production. Nevertheless, the results derived from such research have not always been positive as NPs have been shown, in some cases, to negatively affect plants due to their potentially toxic nature. These toxic effects depend upon the size, concentration, nature, zeta potential, and shape of nanoparticles, as well as the used plant species. The most common response of plants under NPs toxicity is the activation of antioxidant systems and the production of secondary metabolites. The mitigation of such NPs-induced stress highly varies depending on the amount of NPs applied to the plant growth stage and the environmental conditions. On the contrary, higher photosynthetic rates, higher chlorophyll, and proline content, improved homeostasis, hormonal balance, and nutrient assimilation are the favorable physiological changes after NPs applications. Alternatively, NPs do not always exhibit positive or negative impacts on plants, and no physiological influences are sometimes observed. Considering such diversity of responses after the use of NPs on plants, this review summarizes the progress made in nanotechnology on the influence of different NPs in plant physiology through the use of indexes like seed germination, root and shoot morphology, photosynthesis, and their impact when used as carriers of cell signaling molecules such as nitric oxide (NO). Understanding the intimate dynamics of nanoparticle toxicity in plants can prove to be fruitful for the development of areas like agronomy, horticulture, plant pathology, plant physiology, etc. That, in return, can assist to ensure agricultural sustainability. Similarly, this may also help to pave the way to combat the drastic climate change and satisfy growing food demands for the ever-increasing world population. Further studies on molecular and genetic levels can certainly broaden the current understanding of NPs-plant interactions and devise the respective mitigation strategies for environmental safety.

摘要

纳米技术是一个研究领域,由于纳米粒子(NPs)具有巨大的潜力,可以影响几乎所有的行业和传统工艺,因此得到了迅猛的发展。NPs 已广泛应用于农业,以改善植物生理学、生产和植物产品的营养价值。大的表面积和小的尺寸是 NPs 的一些理想属性,可以大大改善植物的生理过程,从而提高作物产量。然而,由于 NPs 的潜在毒性,并非所有研究结果都是积极的,在某些情况下,NPs 会对植物产生负面影响。这些毒性效应取决于纳米粒子的大小、浓度、性质、zeta 电位和形状,以及所用的植物种类。在 NPs 毒性下,植物最常见的反应是激活抗氧化系统和产生次生代谢物。这种 NPs 诱导的胁迫的缓解程度高度取决于施用于植物生长阶段的 NPs 的量和环境条件。相反,较高的光合速率、较高的叶绿素和脯氨酸含量、改善的内稳态、激素平衡和养分吸收是 NPs 应用后有利的生理变化。或者,NPs 并不总是对植物产生积极或消极的影响,有时也观察不到生理影响。考虑到 NPs 对植物使用后的这种多样性反应,本综述总结了通过使用种子发芽、根和芽形态、光合作用等指标,以及将 NPs 用作一氧化氮(NO)等细胞信号分子载体时的影响,纳米技术在植物生理学方面的进展。了解纳米颗粒毒性在植物中的内在动力学可以为农业、园艺、植物病理学、植物生理学等领域的发展提供帮助。这反过来又可以帮助确保农业的可持续性。同样,这也可能有助于为应对气候变化和满足不断增长的世界人口对粮食的需求铺平道路。在分子和遗传水平上的进一步研究肯定会拓宽对 NPs-植物相互作用的现有理解,并为环境安全制定相应的缓解策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验