Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
Autophagy. 2022 Aug;18(8):1915-1931. doi: 10.1080/15548627.2021.2008691. Epub 2021 Dec 19.
Early events during development leading to exit from a pluripotent state and commitment toward a specific germ layer still need in-depth understanding. Autophagy has been shown to play a crucial role in both development and differentiation. This study employs human embryonic and induced pluripotent stem cells to understand the early events of lineage commitment with respect to the role of autophagy in this process. Our data indicate that a dip in autophagy facilitates exit from pluripotency. Upon exit, we demonstrate that the modulation of autophagy affects SOX2 levels and lineage commitment, with induction of autophagy promoting SOX2 degradation and mesendoderm formation, whereas inhibition of autophagy causes SOX2 accumulation and neuroectoderm formation. Thus, our results indicate that autophagy-mediated SOX2 turnover is a determining factor for lineage commitment. These findings will deepen our understanding of development and lead to improved methods to derive different lineages and cell types. ACTB: Actin, beta; ATG: Autophagy-related; BafA1: Bafilomycin A; CAS9: CRISPR-associated protein 9; CQ: Chloroquine; DE: Definitive endoderm; hESCs: Human Embryonic Stem Cells; hiPSCs: Human Induced Pluripotent Stem Cells; LAMP1: Lysosomal Associated Membrane Protein 1; MAP1LC3: Microtubule-Associated Protein 1 Light Chain 3; MTOR: Mechanistic Target Of Rapamycin Kinase; NANOG: Nanog Homeobox; PAX6: Paired Box 6; PE: Phosphatidylethanolamine; POU5F1: POU class 5 Homeobox 1; PRKAA2: Protein Kinase AMP-Activated Catalytic Subunit Alpha 2; SOX2: SRY-box Transcription Factor 2; SQSTM1: Sequestosome 1; ULK1: unc-51 like Autophagy Activating Kinase 1; WDFY3: WD Repeat and FYVE Domain Containing 3.
早期发育事件导致多能性状态退出并向特定的胚层分化仍需要深入理解。自噬在发育和分化中都起着至关重要的作用。本研究利用人类胚胎和诱导多能干细胞来理解谱系分化的早期事件,以及自噬在这个过程中的作用。我们的数据表明,自噬的下降促进了多能性的退出。在退出后,我们证明自噬的调节影响 SOX2 水平和谱系分化,诱导自噬促进 SOX2 降解和中胚层形成,而抑制自噬导致 SOX2 积累和神经外胚层形成。因此,我们的结果表明,自噬介导的 SOX2 周转是谱系分化的决定因素。这些发现将加深我们对发育的理解,并导致开发不同谱系和细胞类型的改进方法。ACTB:肌动蛋白,β;ATG:自噬相关;BafA1:巴佛洛霉素 A;CAS9:CRISPR 相关蛋白 9;CQ:氯喹;DE:确定的内胚层;hESCs:人类胚胎干细胞;hiPSCs:人诱导多能干细胞;LAMP1:溶酶体相关膜蛋白 1;MAP1LC3:微管相关蛋白 1 轻链 3;MTOR:雷帕霉素靶蛋白激酶;NANOG:Nanog 同源盒;PAX6:配对盒 6;PE:磷脂酰乙醇胺;POU5F1:POU 类 5 同源盒 1;PRKAA2:蛋白激酶 AMP 激活的催化亚单位α 2;SOX2:SRY 盒转录因子 2;SQSTM1:自噬体 1;ULK1:unc-51 样自噬激活激酶 1;WDFY3:WD 重复和 FYVE 结构域包含 3。