Suppr超能文献

基于计算机的多重耐药潜在可成药靶点鉴定:一项计算机模拟、体外和体内联合研究

Computer-Based Identification of Potential Druggable Targets in Multidrug-Resistant : A Combined In Silico, In Vitro and In Vivo Study.

作者信息

Badie Omar H, Basyony Ahmed F, Samir Reham

机构信息

Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.

Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.

出版信息

Microorganisms. 2022 Oct 5;10(10):1973. doi: 10.3390/microorganisms10101973.

Abstract

The remarkable rise in antimicrobial resistance is alarming for , which necessitates effective strategies for the discovery of promising anti-acinetobacter agents. We used a subtractive proteomics approach to identify unique protein drug targets. Shortlisted targets passed through subtractive channels, including essentiality, non-homology to the human proteome, druggability, sub-cellular localization prediction and conservation. Sixty-eight drug targets were shortlisted; among these, glutamine synthetase, dihydrodipicolinate reductase, UDP-N-acetylglucosamine acyltransferase, aspartate 1-decarboxylase and bifunctional UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase were evaluated in vitro by determining the minimum inhibitory concentration (MIC) of candidate ligands, citric acid, dipicolinic acid, D-tartaric acid, malonic acid and 2-(N-morpholino)ethanesulfonic acid (MES), respectively, which ranged from 325 to 1500 μg/mL except for MES (25 mg/mL). The candidate ligands, citric acid, D-tartaric acid and malonic acid, showed good binding energy scores to their targets upon applying molecular docking, in addition to a significant reduction in microbial load in the wound infection mouse model. These ligands also exhibited good tolerability to human skin fibroblast. The significant increase in the MIC of malonic acid in β-alanine and pantothenate-supplemented media confirmed its selective inhibition to aspartate 1-decarboxylase. In conclusion, three out of sixty-eight potential drug targets were effectively inhibited in vitro and in vivo by promising ligands.

摘要

抗菌素耐药性的显著上升令人担忧,这就需要有有效的策略来发现有前景的抗不动杆菌药物。我们采用了消减蛋白质组学方法来识别独特的蛋白质药物靶点。入围的靶点经过了包括必需性、与人蛋白质组无同源性、可成药性、亚细胞定位预测和保守性等消减筛选流程。共有68个药物靶点入围;其中,谷氨酰胺合成酶、二氢二吡啶甲酸还原酶、UDP-N-乙酰葡糖胺酰基转移酶、天冬氨酸1-脱羧酶和双功能UDP-N-乙酰葡糖胺二磷酸化酶/葡糖胺-1-磷酸N-乙酰转移酶,分别通过测定候选配体柠檬酸、吡啶二甲酸、D-酒石酸、丙二酸和2-(N-吗啉代)乙磺酸(MES)的最低抑菌浓度(MIC)进行体外评估,除MES为25 mg/mL外,其余配体的MIC范围为325至1500 μg/mL。在进行分子对接后,候选配体柠檬酸、D-酒石酸和丙二酸与其靶点显示出良好的结合能得分,此外在伤口感染小鼠模型中微生物负荷也显著降低。这些配体对人皮肤成纤维细胞也表现出良好的耐受性。在添加β-丙氨酸和泛酸的培养基中丙二酸的MIC显著增加,证实了其对天冬氨酸1-脱羧酶的选择性抑制作用。总之,68个潜在药物靶点中有三个在体外和体内被有前景的配体有效抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c884/9610550/79d597a5dd21/microorganisms-10-01973-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验