IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):10023-10044. doi: 10.1109/TPAMI.2021.3136921. Epub 2022 Nov 7.
Recently, hyperbolic deep neural networks (HDNNs) have been gaining momentum as the deep representations in the hyperbolic space provide high fidelity embeddings with few dimensions, especially for data possessing hierarchical structure. Such a hyperbolic neural architecture is quickly extended to different scientific fields, including natural language processing, single-cell RNA-sequence analysis, graph embedding, financial analysis, and computer vision. The promising results demonstrate its superior capability, significant compactness of the model, and a substantially better physical interpretability than its counterpart in the euclidean space. To stimulate future research, this paper presents a comprehensive review of the literature around the neural components in the construction of HDNN, as well as the generalization of the leading deep approaches to the hyperbolic space. It also presents current applications of various tasks, together with insightful observations and identifying open questions and promising future directions.
最近,双曲深度神经网络(HDNNs)作为双曲空间中的深度表示得到了迅猛发展,因为它可以用少量的维度提供高保真的嵌入,尤其是对于具有层次结构的数据。这种双曲神经架构很快被扩展到不同的科学领域,包括自然语言处理、单细胞 RNA 序列分析、图嵌入、金融分析和计算机视觉。有希望的结果表明它具有卓越的能力、模型的显著紧凑性以及比在欧几里得空间中的对应物更好的物理可解释性。为了激发未来的研究,本文对围绕 HDNN 构建的神经组件以及将主要的深度方法推广到双曲空间的文献进行了全面的综述。它还介绍了各种任务的当前应用,以及富有洞察力的观察结果,并确定了开放问题和有前途的未来方向。