Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
Phys Rev Lett. 2021 Dec 3;127(23):233902. doi: 10.1103/PhysRevLett.127.233902.
Enantiomer separation opens great opportunities to develop the technologies of pharmaceutics, chemicals, and biomedicine, but faces daunting challenges. Here, we discover a considerable chiral-dependent trapping force to separate nanometer-scale enantiomers in a new silicon-based waveguide platform. The electromagnetic chirality gradient of strongly confined evanescent fields can be largely enhanced by the counterpropagating slot waveguides so that the resulting chiral gradient forces can shift the trapping equilibrium positions of dielectric gradient forces. Especially, there exists a transitional width for the slot waveguides to exchange the trapping equilibrium positions between two opposite enantiomers. Our thoroughly numerical investigations demonstrate that the chiral-separable slot waveguides here can offer high efficiency and feasibility of separating chiral nanoparticles, and may pave a route toward new on-chip chiral optical tweezers or optofluidic transport systems for large-scale chiral separation.
对映异构体分离为药剂学、化学和生物医学的发展带来了巨大的机遇,但也面临着巨大的挑战。在这里,我们在一种新的基于硅的波导平台中发现了一种相当大的手性相关捕获力,可以分离纳米级对映异构体。通过反向传播的槽波导,可以大大增强强限制消逝场的电磁手性梯度,从而使产生的手性梯度力可以改变介电梯度力的捕获平衡位置。特别是,槽波导存在一个过渡宽度,可以在两个对映异构体之间交换捕获平衡位置。我们的深入数值研究表明,这里的手性可分离槽波导可以提供高效和可行的手性纳米粒子分离,并可能为大规模手性分离开辟新的片上手性光镊或光流控传输系统的途径。