Elkhenany Hoda, Bonilla Pablo, Giraldo Esther, Alastrue Agudo Ana, Edel Michael J, Vicent María Jesus, Roca Fernando Gisbert, Ramos Cristina Martínez, Doblado Laura Rodríguez, Pradas Manuel Monleón, Manzano Victoria Moreno
Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22785, Egypt.
Biomedicines. 2021 Dec 16;9(12):1928. doi: 10.3390/biomedicines9121928.
Tissue engineering, including cell transplantation and the application of biomaterials and bioactive molecules, represents a promising approach for regeneration following spinal cord injury (SCI). We designed a combinatorial tissue-engineered approach for the minimally invasive treatment of SCI-a hyaluronic acid (HA)-based scaffold containing polypyrrole-coated fibers (PPY) combined with the RAD16-I self-assembling peptide hydrogel (Corning PuraMatrix™ peptide hydrogel (PM)), human induced neural progenitor cells (iNPCs), and a nanoconjugated form of curcumin (CURC). In vitro cultures demonstrated that PM preserves iNPC viability and the addition of CURC reduces apoptosis and enhances the outgrowth of Nestin-positive neurites from iNPCs, compared to non-embedded iNPCs. The treatment of spinal cord organotypic cultures also demonstrated that CURC enhances cell migration and prompts a neuron-like morphology of embedded iNPCs implanted over the tissue slices. Following sub-acute SCI by traumatic contusion in rats, the implantation of PM-embedded iNPCs and CURC with PPY fibers supported a significant increase in neuro-preservation (as measured by greater βIII-tubulin staining of neuronal fibers) and decrease in the injured area (as measured by the lack of GFAP staining). This combination therapy also restricted platelet-derived growth factor expression, indicating a reduction in fibrotic pericyte invasion. Overall, these findings support PM-embedded iNPCs with CURC placed within an HA demilune scaffold containing PPY fibers as a minimally invasive combination-based alternative to cell transplantation alone.
组织工程,包括细胞移植以及生物材料和生物活性分子的应用,是脊髓损伤(SCI)后再生的一种有前景的方法。我们设计了一种用于SCI微创治疗的组合组织工程方法——一种基于透明质酸(HA)的支架,其包含聚吡咯涂层纤维(PPY),并与RAD16-I自组装肽水凝胶(康宁PuraMatrix™肽水凝胶(PM))、人诱导神经祖细胞(iNPCs)以及纳米共轭形式的姜黄素(CURC)相结合。体外培养表明,与未包埋的iNPCs相比,PM可维持iNPCs的活力,添加CURC可减少细胞凋亡并增强iNPCs中巢蛋白阳性神经突的生长。脊髓器官型培养的处理也表明,CURC可增强细胞迁移,并促使植入组织切片上的包埋iNPCs呈现神经元样形态。在大鼠遭受创伤性挫伤导致亚急性SCI后,植入含有PPY纤维的PM包埋iNPCs和CURC可显著增加神经保护作用(通过神经元纤维的βIII微管蛋白染色更强来衡量),并减小损伤面积(通过缺乏GFAP染色来衡量)。这种联合疗法还限制了血小板衍生生长因子的表达,表明纤维化周细胞浸润减少。总体而言,这些发现支持将含有CURC的PM包埋iNPCs置于含有PPY纤维的HA半月形支架内,作为一种微创的基于组合的替代方法,而非单独的细胞移植。