Suppr超能文献

制造用于分析生物样本的硅谐振器。

Fabricating Silicon Resonators for Analysing Biological Samples.

作者信息

Kumemura Momoko, Pekin Deniz, Menon Vivek Anand, Van Seuningen Isabelle, Collard Dominique, Tarhan Mehmet Cagatay

机构信息

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan.

LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

出版信息

Micromachines (Basel). 2021 Dec 12;12(12):1546. doi: 10.3390/mi12121546.

Abstract

The adaptability of microscale devices allows microtechnologies to be used for a wide range of applications. Biology and medicine are among those fields that, in recent decades, have applied microtechnologies to achieve new and improved functionality. However, despite their ability to achieve assay sensitivities that rival or exceed conventional standards, silicon-based microelectromechanical systems remain underutilised for biological and biomedical applications. Although microelectromechanical resonators and actuators do not always exhibit optimal performance in liquid due to electrical double layer formation and high damping, these issues have been solved with some innovative fabrication processes or alternative experimental approaches. This paper focuses on several examples of silicon-based resonating devices with a brief look at their fundamental sensing elements and key fabrication steps, as well as current and potential biological/biomedical applications.

摘要

微尺度设备的适应性使得微技术能够应用于广泛的领域。生物学和医学是近几十年来应用微技术以实现新的和改进功能的领域。然而,尽管基于硅的微机电系统能够实现与传统标准相当或超过传统标准的检测灵敏度,但在生物和生物医学应用中,它们仍未得到充分利用。尽管由于双电层的形成和高阻尼,微机电谐振器和致动器在液体中并不总是表现出最佳性能,但通过一些创新的制造工艺或替代实验方法,这些问题已经得到解决。本文重点介绍了几个基于硅的谐振器件的例子,简要介绍了它们的基本传感元件和关键制造步骤,以及当前和潜在的生物/生物医学应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7051/8708134/472337d61653/micromachines-12-01546-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验