Suppr超能文献

一种基于轻量级YOLOv4的、使用坐标注意力和特征融合的林业害虫检测方法。

A Lightweight YOLOv4-Based Forestry Pest Detection Method Using Coordinate Attention and Feature Fusion.

作者信息

Zha Mingfeng, Qian Wenbin, Yi Wenlong, Hua Jing

机构信息

School of Software, Jiangxi Agricultural University, Nanchang 330045, China.

出版信息

Entropy (Basel). 2021 Nov 27;23(12):1587. doi: 10.3390/e23121587.

Abstract

Traditional pest detection methods are challenging to use in complex forestry environments due to their low accuracy and speed. To address this issue, this paper proposes the YOLOv4_MF model. The YOLOv4_MF model utilizes MobileNetv2 as the feature extraction block and replaces the traditional convolution with depth-wise separated convolution to reduce the model parameters. In addition, the coordinate attention mechanism was embedded in MobileNetv2 to enhance feature information. A symmetric structure consisting of a three-layer spatial pyramid pool is presented, and an improved feature fusion structure was designed to fuse the target information. For the loss function, focal loss was used instead of cross-entropy loss to enhance the network's learning of small targets. The experimental results showed that the YOLOv4_MF model has 4.24% higher mAP, 4.37% higher precision, and 6.68% higher recall than the YOLOv4 model. The size of the proposed model was reduced to 1/6 of that of YOLOv4. Moreover, the proposed algorithm achieved 38.62% mAP with respect to some state-of-the-art algorithms on the COCO dataset.

摘要

传统的害虫检测方法由于其准确性和速度较低,在复杂的林业环境中使用具有挑战性。为了解决这个问题,本文提出了YOLOv4_MF模型。YOLOv4_MF模型利用MobileNetv2作为特征提取模块,并用深度可分离卷积取代传统卷积以减少模型参数。此外,坐标注意力机制被嵌入到MobileNetv2中以增强特征信息。提出了一种由三层空间金字塔池组成的对称结构,并设计了一种改进的特征融合结构来融合目标信息。对于损失函数,使用焦点损失代替交叉熵损失以增强网络对小目标的学习。实验结果表明,YOLOv4_MF模型的平均精度均值(mAP)比YOLOv4模型高4.24%,精度高4.37%,召回率高6.68%。所提出模型的大小减小到YOLOv4的1/6。此外,在所提出的算法在COCO数据集上相对于一些先进算法达到了38.62%的mAP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9e6/8700145/208430cd1a34/entropy-23-01587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验