Suppr超能文献

GABNet:用于视网膜光学相干断层扫描疾病分类的全局注意力模块

GABNet: global attention block for retinal OCT disease classification.

作者信息

Huang Xuan, Ai Zhuang, Wang Hui, She Chongyang, Feng Jing, Wei Qihao, Hao Baohai, Tao Yong, Lu Yaping, Zeng Fanxin

机构信息

Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

出版信息

Front Neurosci. 2023 Jun 2;17:1143422. doi: 10.3389/fnins.2023.1143422. eCollection 2023.

Abstract

INTRODUCTION

The retina represents a critical ocular structure. Of the various ophthalmic afflictions, retinal pathologies have garnered considerable scientific interest, owing to their elevated prevalence and propensity to induce blindness. Among clinical evaluation techniques employed in ophthalmology, optical coherence tomography (OCT) is the most commonly utilized, as it permits non-invasive, rapid acquisition of high-resolution, cross-sectional images of the retina. Timely detection and intervention can significantly abate the risk of blindness and effectively mitigate the national incidence rate of visual impairments.

METHODS

This study introduces a novel, efficient global attention block (GAB) for feed forward convolutional neural networks (CNNs). The GAB generates an attention map along three dimensions (height, width, and channel) for any intermediate feature map, which it then uses to compute adaptive feature weights by multiplying it with the input feature map. This GAB is a versatile module that can seamlessly integrate with any CNN, significantly improving its classification performance. Based on the GAB, we propose a lightweight classification network model, GABNet, which we develop on a UCSD general retinal OCT dataset comprising 108,312 OCT images from 4686 patients, including choroidal neovascularization (CNV), diabetic macular edema (DME), drusen, and normal cases.

RESULTS

Notably, our approach improves the classification accuracy by 3.7% over the EfficientNetV2B3 network model. We further employ gradient-weighted class activation mapping (Grad-CAM) to highlight regions of interest on retinal OCT images for each class, enabling doctors to easily interpret model predictions and improve their efficiency in evaluating relevant models.

DISCUSSION

With the increasing use and application of OCT technology in the clinical diagnosis of retinal images, our approach offers an additional diagnostic tool to enhance the diagnostic efficiency of clinical OCT retinal images.

摘要

引言

视网膜是眼部的关键结构。在各种眼科疾病中,视网膜病变因其高发病率和致盲倾向而引发了大量科学关注。在眼科临床评估技术中,光学相干断层扫描(OCT)是最常用的,因为它能够非侵入性地快速获取视网膜的高分辨率横断面图像。及时检测和干预可显著降低失明风险,并有效降低全国视力障碍发病率。

方法

本研究为前馈卷积神经网络(CNN)引入了一种新颖、高效的全局注意力模块(GAB)。GAB会为任何中间特征图沿三个维度(高度、宽度和通道)生成一个注意力图,然后通过将其与输入特征图相乘来计算自适应特征权重。这个GAB是一个通用模块,可以无缝集成到任何CNN中,显著提高其分类性能。基于GAB,我们提出了一种轻量级分类网络模型GABNet,该模型是在一个UCSD通用视网膜OCT数据集上开发的,该数据集包含来自4686名患者的108312张OCT图像,包括脉络膜新生血管(CNV)、糖尿病性黄斑水肿(DME)、玻璃膜疣和正常病例。

结果

值得注意的是,我们的方法比EfficientNetV2B3网络模型的分类准确率提高了3.7%。我们进一步采用梯度加权类激活映射(Grad-CAM)来突出每个类在视网膜OCT图像上的感兴趣区域,使医生能够轻松解释模型预测结果,并提高他们评估相关模型的效率。

讨论

随着OCT技术在视网膜图像临床诊断中的使用和应用不断增加,我们的方法提供了一种额外的诊断工具,以提高临床OCT视网膜图像的诊断效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f9/10272427/1e5a1d784e5f/fnins-17-1143422-g0001.jpg

相似文献

1
GABNet: global attention block for retinal OCT disease classification.
Front Neurosci. 2023 Jun 2;17:1143422. doi: 10.3389/fnins.2023.1143422. eCollection 2023.
2
Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.
Comput Biol Med. 2022 May;144:105368. doi: 10.1016/j.compbiomed.2022.105368. Epub 2022 Mar 2.
3
FN-OCT: Disease Detection Algorithm for Retinal Optical Coherence Tomography Based on a Fusion Network.
Front Neuroinform. 2022 Jun 16;16:876927. doi: 10.3389/fninf.2022.876927. eCollection 2022.
4
OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images.
Comput Methods Programs Biomed. 2021 Mar;200:105877. doi: 10.1016/j.cmpb.2020.105877. Epub 2020 Nov 28.
7
Fully automated detection of retinal disorders by image-based deep learning.
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.
8
Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images.
Interdiscip Sci. 2022 Dec;14(4):906-916. doi: 10.1007/s12539-022-00533-z. Epub 2022 Jun 29.
10
Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification.
J Popul Ther Clin Pharmacol. 2022 Aug 27;29(3):e112-e122. doi: 10.47750/jptcp.2022.945. eCollection 2022.

引用本文的文献

3
A Low Complexity Efficient Deep Learning Model for Automated Retinal Disease Diagnosis.
J Healthc Inform Res. 2025 Jan 3;9(1):1-40. doi: 10.1007/s41666-024-00182-5. eCollection 2025 Mar.
4
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
5
Stitched vision transformer for age-related macular degeneration detection using retinal optical coherence tomography images.
PLoS One. 2024 Jun 5;19(6):e0304943. doi: 10.1371/journal.pone.0304943. eCollection 2024.
6
Explainable ensemble learning method for OCT detection with transfer learning.
PLoS One. 2024 Mar 22;19(3):e0296175. doi: 10.1371/journal.pone.0296175. eCollection 2024.
8
Multi-Stage Classification of Retinal OCT Using Multi-Scale Ensemble Deep Architecture.
Bioengineering (Basel). 2023 Jul 10;10(7):823. doi: 10.3390/bioengineering10070823.

本文引用的文献

1
FN-OCT: Disease Detection Algorithm for Retinal Optical Coherence Tomography Based on a Fusion Network.
Front Neuroinform. 2022 Jun 16;16:876927. doi: 10.3389/fninf.2022.876927. eCollection 2022.
2
Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.
Comput Biol Med. 2022 May;144:105368. doi: 10.1016/j.compbiomed.2022.105368. Epub 2022 Mar 2.
3
DR-IIXRN : Detection Algorithm of Diabetic Retinopathy Based on Deep Ensemble Learning and Attention Mechanism.
Front Neuroinform. 2021 Dec 24;15:778552. doi: 10.3389/fninf.2021.778552. eCollection 2021.
5
Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays.
Ing Rech Biomed. 2022 Apr;43(2):114-119. doi: 10.1016/j.irbm.2020.07.001. Epub 2020 Jul 3.
6
Classification of breast density categories based on SE-Attention neural networks.
Comput Methods Programs Biomed. 2020 Sep;193:105489. doi: 10.1016/j.cmpb.2020.105489. Epub 2020 Apr 30.
7
Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet).
PLoS One. 2020 May 4;15(5):e0232127. doi: 10.1371/journal.pone.0232127. eCollection 2020.
8
Squeeze-and-Excitation Networks.
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.
9
Artificial intelligence-based decision-making for age-related macular degeneration.
Theranostics. 2019 Jan 1;9(1):232-245. doi: 10.7150/thno.28447. eCollection 2019.
10
Deep Convolutional Neural Networks for breast cancer screening.
Comput Methods Programs Biomed. 2018 Apr;157:19-30. doi: 10.1016/j.cmpb.2018.01.011. Epub 2018 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验