Huang Xuan, Ai Zhuang, Wang Hui, She Chongyang, Feng Jing, Wei Qihao, Hao Baohai, Tao Yong, Lu Yaping, Zeng Fanxin
Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Front Neurosci. 2023 Jun 2;17:1143422. doi: 10.3389/fnins.2023.1143422. eCollection 2023.
The retina represents a critical ocular structure. Of the various ophthalmic afflictions, retinal pathologies have garnered considerable scientific interest, owing to their elevated prevalence and propensity to induce blindness. Among clinical evaluation techniques employed in ophthalmology, optical coherence tomography (OCT) is the most commonly utilized, as it permits non-invasive, rapid acquisition of high-resolution, cross-sectional images of the retina. Timely detection and intervention can significantly abate the risk of blindness and effectively mitigate the national incidence rate of visual impairments.
This study introduces a novel, efficient global attention block (GAB) for feed forward convolutional neural networks (CNNs). The GAB generates an attention map along three dimensions (height, width, and channel) for any intermediate feature map, which it then uses to compute adaptive feature weights by multiplying it with the input feature map. This GAB is a versatile module that can seamlessly integrate with any CNN, significantly improving its classification performance. Based on the GAB, we propose a lightweight classification network model, GABNet, which we develop on a UCSD general retinal OCT dataset comprising 108,312 OCT images from 4686 patients, including choroidal neovascularization (CNV), diabetic macular edema (DME), drusen, and normal cases.
Notably, our approach improves the classification accuracy by 3.7% over the EfficientNetV2B3 network model. We further employ gradient-weighted class activation mapping (Grad-CAM) to highlight regions of interest on retinal OCT images for each class, enabling doctors to easily interpret model predictions and improve their efficiency in evaluating relevant models.
With the increasing use and application of OCT technology in the clinical diagnosis of retinal images, our approach offers an additional diagnostic tool to enhance the diagnostic efficiency of clinical OCT retinal images.
视网膜是眼部的关键结构。在各种眼科疾病中,视网膜病变因其高发病率和致盲倾向而引发了大量科学关注。在眼科临床评估技术中,光学相干断层扫描(OCT)是最常用的,因为它能够非侵入性地快速获取视网膜的高分辨率横断面图像。及时检测和干预可显著降低失明风险,并有效降低全国视力障碍发病率。
本研究为前馈卷积神经网络(CNN)引入了一种新颖、高效的全局注意力模块(GAB)。GAB会为任何中间特征图沿三个维度(高度、宽度和通道)生成一个注意力图,然后通过将其与输入特征图相乘来计算自适应特征权重。这个GAB是一个通用模块,可以无缝集成到任何CNN中,显著提高其分类性能。基于GAB,我们提出了一种轻量级分类网络模型GABNet,该模型是在一个UCSD通用视网膜OCT数据集上开发的,该数据集包含来自4686名患者的108312张OCT图像,包括脉络膜新生血管(CNV)、糖尿病性黄斑水肿(DME)、玻璃膜疣和正常病例。
值得注意的是,我们的方法比EfficientNetV2B3网络模型的分类准确率提高了3.7%。我们进一步采用梯度加权类激活映射(Grad-CAM)来突出每个类在视网膜OCT图像上的感兴趣区域,使医生能够轻松解释模型预测结果,并提高他们评估相关模型的效率。
随着OCT技术在视网膜图像临床诊断中的使用和应用不断增加,我们的方法提供了一种额外的诊断工具,以提高临床OCT视网膜图像的诊断效率。