基于改进YOLOX_S的车辆检测研究。

Research on vehicle detection based on improved YOLOX_S.

作者信息

Liu Zhihai, Han Wenyu, Xu Hao, Gong Kesong, Zeng Qingliang, Zhao Xieguang

机构信息

College of Transportation, Shandong University of Science and Technology, Qingdao, 266590, China.

College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.

出版信息

Sci Rep. 2023 Dec 27;13(1):23081. doi: 10.1038/s41598-023-50306-x.

Abstract

Aiming at the problem of easy misdetection and omission of small targets of long-distance vehicles in detecting vehicles in traffic scenes, an improved YOLOX_S detection model is proposed. Firstly, the redundant part of the original YOLOX_S network structure is clipped using the model compression strategy, which improves the model inference speed while maintaining the detection accuracy; secondly, the Resunit_CA structure is constructed by incorporating the coordinate attention module in the residual structure, which reduces the loss of feature information and improves the attention to the small target features; thirdly, in order to obtain richer small target features, the PAFPN structure tail to add an adaptive feature fusion module, which improves the model detection accuracy; finally, the loss function is optimized in the decoupled head structure, and the Focal Loss loss function is used to alleviate the problem of uneven distribution of positive and negative samples. The experimental results show that compared with the original YOLOX_S model, the improved model proposed in this paper achieves an average detection accuracy of 77.19% on this experimental dataset. However, the detection speed decreases to 29.73 fps, which is still a large room for improvement in detection in real-time. According to the visualization experimental results, it can be seen that the improved model effectively alleviates the problems of small-target missed detection and multi-target occlusion.

摘要

针对交通场景中车辆检测时远距离车辆小目标易漏检和误检的问题,提出了一种改进的YOLOX_S检测模型。首先,采用模型压缩策略裁剪原始YOLOX_S网络结构的冗余部分,在保持检测精度的同时提高了模型推理速度;其次,通过在残差结构中融入坐标注意力模块构建Resunit_CA结构,减少了特征信息的损失,提高了对小目标特征的关注度;第三,为了获得更丰富的小目标特征,在PAFPN结构尾部添加自适应特征融合模块,提高了模型检测精度;最后,在解耦头结构中对损失函数进行优化,采用Focal Loss损失函数缓解正负样本分布不均衡的问题。实验结果表明,与原始YOLOX_S模型相比,本文提出的改进模型在此实验数据集上的平均检测精度达到了77.19%。然而,检测速度降至29.73fps,在实时检测方面仍有很大的提升空间。根据可视化实验结果可以看出,改进模型有效缓解了小目标漏检和多目标遮挡的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/10754853/d7a9ec0b48bd/41598_2023_50306_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索