Wang Xu, Shojaie Ali
Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
Entropy (Basel). 2021 Dec 1;23(12):1622. doi: 10.3390/e23121622.
Thanks to technological advances leading to near-continuous time observations, emerging multivariate point process data offer new opportunities for causal discovery. However, a key obstacle in achieving this goal is that many relevant processes may not be observed in practice. Naïve estimation approaches that ignore these hidden variables can generate misleading results because of the unadjusted confounding. To plug this gap, we propose a deconfounding procedure to estimate high-dimensional point process networks with only a subset of the nodes being observed. Our method allows flexible connections between the observed and unobserved processes. It also allows the number of unobserved processes to be unknown and potentially larger than the number of observed nodes. Theoretical analyses and numerical studies highlight the advantages of the proposed method in identifying causal interactions among the observed processes.
由于技术进步实现了近乎连续的时间观测,新兴的多变量点过程数据为因果发现提供了新机会。然而,实现这一目标的一个关键障碍是,在实际中可能无法观测到许多相关过程。由于未调整的混杂因素,忽略这些隐藏变量的简单估计方法可能会产生误导性结果。为了弥补这一差距,我们提出了一种去混杂程序,用于估计只有一部分节点被观测到的高维点过程网络。我们的方法允许观测到的和未观测到的过程之间进行灵活连接。它还允许未观测到的过程数量未知且可能大于观测到的节点数量。理论分析和数值研究突出了所提出方法在识别观测到的过程之间因果相互作用方面的优势。