Suppr超能文献

含混杂因素的非线性因果发现

Nonlinear causal discovery with confounders.

作者信息

Li Chunlin, Shen Xiaotong, Pan Wei

机构信息

School of Statistics, University of Minnesota, Minneapolis, MN 55455.

Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455.

出版信息

J Am Stat Assoc. 2024;119(546):1205-1214. doi: 10.1080/01621459.2023.2179490. Epub 2023 Mar 15.

Abstract

This article introduces a causal discovery method to learn nonlinear relationships in a directed acyclic graph with correlated Gaussian errors due to confounding. First, we derive model identifiability under the sublinear growth assumption. Then, we propose a novel method, named the Deconfounded Functional Structure Estimation (DeFuSE), consisting of a deconfounding adjustment to remove the confounding effects and a sequential procedure to estimate the causal order of variables. We implement DeFuSE via feedforward neural networks for scalable computation. Moreover, we establish the consistency of DeFuSE under an assumption called the strong causal minimality. In simulations, DeFuSE compares favorably against state-of-the-art competitors that ignore confounding or nonlinearity. Finally, we demonstrate the utility and effectiveness of the proposed approach with an application to gene regulatory network analysis. The Python implementation is available at https://github.com/chunlinli/defuse.

摘要

本文介绍了一种因果发现方法,用于在存在由于混杂因素导致的相关高斯误差的有向无环图中学习非线性关系。首先,我们在亚线性增长假设下推导模型可识别性。然后,我们提出了一种名为去混杂功能结构估计(DeFuSE)的新方法,该方法包括用于消除混杂效应的去混杂调整和用于估计变量因果顺序的顺序过程。我们通过前馈神经网络实现DeFuSE以进行可扩展计算。此外,我们在一个称为强因果极小性的假设下建立了DeFuSE的一致性。在模拟中,DeFuSE与忽略混杂或非线性的现有最佳竞争对手相比具有优势。最后,我们通过将其应用于基因调控网络分析来证明所提出方法的实用性和有效性。Python实现可在https://github.com/chunlinli/defuse获得。

相似文献

1
Nonlinear causal discovery with confounders.含混杂因素的非线性因果发现
J Am Stat Assoc. 2024;119(546):1205-1214. doi: 10.1080/01621459.2023.2179490. Epub 2023 Mar 15.
8
Reconstruction of a directed acyclic graph with intervention.带干预的有向无环图重建
Electron J Stat. 2020;14(2):4133-4164. doi: 10.1214/20-ejs1767. Epub 2020 Nov 17.

本文引用的文献

2
Likelihood ratio tests for a large directed acyclic graph.针对大型有向无环图的似然比检验。
J Am Stat Assoc. 2020;115(531):1304-1319. doi: 10.1080/01621459.2019.1623042. Epub 2019 Jun 25.
4
Review of Causal Discovery Methods Based on Graphical Models.基于图形模型的因果发现方法综述
Front Genet. 2019 Jun 4;10:524. doi: 10.3389/fgene.2019.00524. eCollection 2019.
6
Presenilin-1 mutations and Alzheimer's disease.早老素-1突变与阿尔茨海默病。
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):629-631. doi: 10.1073/pnas.1619574114. Epub 2017 Jan 12.
7
Graph Estimation with Joint Additive Models.基于联合加法模型的图估计
Biometrika. 2014 Mar 1;101(1):85-101. doi: 10.1093/biomet/ast053.
8
Likelihood-based selection and sharp parameter estimation.基于似然性的选择与精确参数估计。
J Am Stat Assoc. 2012 Jan 1;107(497):223-232. doi: 10.1080/01621459.2011.645783. Epub 2012 Jun 11.
9
Amyloid precursor protein processing and Alzheimer's disease.淀粉样前体蛋白的加工与阿尔茨海默病。
Annu Rev Neurosci. 2011;34:185-204. doi: 10.1146/annurev-neuro-061010-113613.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验