West Bruce J
Center for Nonlinear Science, University of North Texas Denton, Denton, TX 76203, USA.
Office for Research and Innovation, North Carolina State University Rayleigh, Raleigh, NC 27695, USA.
Entropy (Basel). 2021 Dec 17;23(12):1693. doi: 10.3390/e23121693.
Wars, terrorist attacks, as well as natural catastrophes typically result in a large number of casualties, whose distributions have been shown to belong to the class of Pareto's inverse power laws (IPLs). The number of deaths resulting from terrorist attacks are herein fit by a double Pareto probability density function (PDF). We use the fractional probability calculus to frame our arguments and to parameterize a hypothetical control process to temper a Lévy process through a collective-induced potential. Thus, the PDF is shown to be a consequence of the complexity of the underlying social network. The analytic steady-state solution to the fractional Fokker-Planck equation (FFPE) is fit to a forty-year fatal quarrel (FQ) dataset.
战争、恐怖袭击以及自然灾害通常会导致大量人员伤亡,其分布已被证明属于帕累托逆幂律(IPL)类别。本文中,恐怖袭击造成的死亡人数由双帕累托概率密度函数(PDF)拟合。我们使用分数概率微积分来构建论点,并对一个假设的控制过程进行参数化,以通过集体诱导势来调节一个 Lévy 过程。因此,概率密度函数被证明是基础社会网络复杂性的结果。分数福克 - 普朗克方程(FFPE)的解析稳态解被拟合到一个四十年的致命争吵(FQ)数据集。