Suppr超能文献

精确学习增强朴素贝叶斯分类器

Exact Learning Augmented Naive Bayes Classifier.

作者信息

Sugahara Shouta, Ueno Maomi

机构信息

Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan.

出版信息

Entropy (Basel). 2021 Dec 20;23(12):1703. doi: 10.3390/e23121703.

Abstract

Earlier studies have shown that classification accuracies of Bayesian networks (BNs) obtained by maximizing the conditional log likelihood (CLL) of a class variable, given the feature variables, were higher than those obtained by maximizing the marginal likelihood (ML). However, differences between the performances of the two scores in the earlier studies may be attributed to the fact that they used approximate learning algorithms, not exact ones. This paper compares the classification accuracies of BNs with approximate learning using CLL to those with exact learning using ML. The results demonstrate that the classification accuracies of BNs obtained by maximizing the ML are higher than those obtained by maximizing the CLL for large data. However, the results also demonstrate that the classification accuracies of exact learning BNs using the ML are much worse than those of other methods when the sample size is small and the class variable has numerous parents. To resolve the problem, we propose an exact learning augmented naive Bayes classifier (ANB), which ensures a class variable with no parents. The proposed method is guaranteed to asymptotically estimate the identical class posterior to that of the exactly learned BN. Comparison experiments demonstrated the superior performance of the proposed method.

摘要

早期研究表明,通过最大化给定特征变量时类变量的条件对数似然(CLL)所获得的贝叶斯网络(BN)的分类准确率,高于通过最大化边际似然(ML)所获得的分类准确率。然而,早期研究中这两种评分性能之间的差异可能归因于他们使用的是近似学习算法,而非精确算法。本文将使用CLL进行近似学习的BN的分类准确率与使用ML进行精确学习的BN的分类准确率进行了比较。结果表明,对于大数据而言,通过最大化ML所获得的BN的分类准确率高于通过最大化CLL所获得的分类准确率。然而,结果还表明,当样本量较小且类变量有众多父节点时,使用ML的精确学习BN的分类准确率比其他方法要差得多。为解决该问题,我们提出了一种精确学习增强朴素贝叶斯分类器(ANB),它确保类变量没有父节点。所提出的方法被保证能渐近估计出与精确学习的BN相同的类后验概率。比较实验证明了所提出方法的优越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e94/8700436/472e55468a1e/entropy-23-01703-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验