Chou Chao Chung-Ting, Chou Chau Yuan-Fong, Chen Sy-Hann, Huang Hung Ji, Lim Chee Ming, Kooh Muhammad Raziq Rahimi, Thotagamuge Roshan, Chiang Hai-Pang
Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan.
Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, Bandar Seri Begawan BE1410, Brunei.
Nanomaterials (Basel). 2021 Nov 21;11(11):3147. doi: 10.3390/nano11113147.
This study proposes a compact plasmonic metal-insulator-metal pressure sensor comprising a bus waveguide and a resonator, including one horizontal slot and several stubs. We calculate the transmittance spectrum and the electromagnetic field distribution using the finite element method. When the resonator's top layer undergoes pressure, the resonance wavelength redshifts with increasing deformation, and their relation is nearly linear. The designed pressure sensor possesses the merits of ultrahigh sensitivity, multiple modes, and a simple structure. The maximum sensitivity and resonance wavelength shift can achieve 592.44 nm/MPa and 364 nm, respectively, which are the highest values to our knowledge. The obtained sensitivity shows 23.32 times compared to the highest one reported in the literature. The modeled design paves a promising path for applications in the nanophotonic field.
本研究提出了一种紧凑型等离子体金属-绝缘体-金属压力传感器,其包括一个总线波导和一个谐振器,该谐振器包含一个水平狭缝和几个短截线。我们使用有限元方法计算了透射光谱和电磁场分布。当谐振器的顶层受到压力时,共振波长会随着变形的增加而发生红移,并且它们之间的关系近似线性。所设计的压力传感器具有超高灵敏度、多模式和结构简单的优点。最大灵敏度和共振波长偏移分别可达到592.44 nm/MPa和364 nm,据我们所知,这是最高值。所获得的灵敏度与文献中报道的最高值相比提高了23.32倍。该模型设计为纳米光子学领域的应用铺平了一条充满希望的道路。