Suppr超能文献

结合功能磁共振成像和眼动追踪技术用于社会认知研究。

Combining fMRI and Eye-tracking for the Study of Social Cognition.

作者信息

Rusch Kristin Marie

机构信息

Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.

Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Düsseldorf, Kempen, Germany.

出版信息

Neurosci Insights. 2021 Dec 16;16:26331055211065497. doi: 10.1177/26331055211065497. eCollection 2021.

Abstract

The study of social cognition with functional magnetic resonance imaging (fMRI) affords the use of complex stimulus material. Visual attention to distinct aspects of these stimuli can result in the involvement of remarkably different neural systems. Usually, the influence of gaze on neural signal is either disregarded or dealt with by controlling gaze of participants through instructions or tasks. However, behavioral restrictions like this limit the study's ecological validity. Thus, it would be preferable if participants freely look at the stimuli while their gaze traces are measured. Yet several impediments hamper a combination of fMRI and eye-tracking. In our recent work on neural Theory of Mind processes in alexithymia, we propose a simple way of integrating dwell time on specific stimulus features into general linear models of fMRI data. By parametrically modeling fixations, we were able to distinguish neural processes asssociated with specific stimulus features looked at. Here, I discuss opportunities and obstacles of this approach in more detail. My goal is to motivate a wider use of parametric models - usually implemented in common fMRI software packages - to combine fMRI and eye-tracking data.

摘要

使用功能磁共振成像(fMRI)研究社会认知能够利用复杂的刺激材料。对这些刺激的不同方面进行视觉注意会导致截然不同的神经系统参与其中。通常,注视对神经信号的影响要么被忽视,要么通过指导语或任务来控制参与者的注视以进行处理。然而,这样的行为限制会降低研究的生态效度。因此,如果能在测量参与者注视轨迹的同时让他们自由观看刺激物,那就更好了。然而,有几个障碍阻碍了fMRI与眼动追踪的结合。在我们最近关于述情障碍中神经心理理论过程的研究中,我们提出了一种将在特定刺激特征上的停留时间整合到fMRI数据通用线性模型中的简单方法。通过对注视进行参数化建模,我们能够区分与所观看的特定刺激特征相关的神经过程。在此,我将更详细地讨论这种方法的机遇和障碍。我的目标是促使人们更广泛地使用通常在常见fMRI软件包中实现的参数模型,以结合fMRI和眼动追踪数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9c3/8689432/19e86cdfe5d5/10.1177_26331055211065497-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验