Suppr超能文献

在I期癌症试验中,将多种毒性替代指标作为连续变量进行剂量选择优化。

Optimization of dose selection using multiple surrogates of toxicity as a continuous variable in phase I cancer trial.

作者信息

Lee Se Yoon, Munafo Alain, Girard Pascal, Goteti Kosalaram

机构信息

Pharmacometrics, EMD Serono R&D Institute, 45A Middlesex Turnpike, Billerica, MA 01821, USA; Department of Statistics, Texas A&M University, College Station, TX 77843, USA.

Merck Institute for Pharmacometrics, EPFL Innovation Park, Building I, CH-1015 Lausanne, Switzerland.

出版信息

Contemp Clin Trials. 2022 Feb;113:106657. doi: 10.1016/j.cct.2021.106657. Epub 2021 Dec 22.

Abstract

In phase I trials, it is the top priority of clinicians to effectively treat patients and minimize the chance of exposing them to subtherapeutic and overly toxic doses, while exploiting patient information. Motived by this practical consideration, we revive the one parameter linear dose-finder developed in 1970s to accommodate a continuous toxicity response in the phase I cancer clinical trials, which is called the two parameters linear dose-finder (2PLD). The 2PLD is a fully Bayesian model that assumes a linear relationship between toxicity response and dose. We suggest a dose search algorithm based on the 2PLD to exploit the grades of toxicities from multiple adverse events to align with Common Toxicity Criteria for Adverse Events provided by the National Cancer Institute. The proposed search procedure suggests an optimal dose to each patient by using accrued patients' information while controlling the posterior probability of overdose. The heterogeneity of patients in dose reaction is addressed by making a fully Bayesian inference about the standard deviation of toxicity responses. The 2PLD can be an attractive tool for clinical scientists due to its parsimonious description of a toxicity-dose curve and medical interpretation as well as an automatic posterior computation. We illustrate the performance of this design using simulation data to identify the maximum tolerated dose.

摘要

在I期试验中,临床医生的首要任务是有效治疗患者,并在利用患者信息的同时,尽量减少让患者暴露于亚治疗剂量和过度毒性剂量的可能性。出于这一实际考虑,我们重新启用了20世纪70年代开发的单参数线性剂量查找器,以适应I期癌症临床试验中的连续毒性反应,即双参数线性剂量查找器(2PLD)。2PLD是一个完全贝叶斯模型,假设毒性反应和剂量之间存在线性关系。我们提出了一种基于2PLD的剂量搜索算法,利用多个不良事件的毒性分级,使其与美国国立癌症研究所提供的不良事件通用毒性标准相一致。所提出的搜索程序通过使用累积患者的信息,在控制过量的后验概率的同时,为每位患者推荐最佳剂量。通过对毒性反应标准差进行完全贝叶斯推断,解决了患者剂量反应的异质性问题。2PLD因其对毒性-剂量曲线的简洁描述、医学解释以及自动后验计算,可能成为临床科学家的一个有吸引力的工具。我们使用模拟数据来说明该设计在识别最大耐受剂量方面的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验