Suppr超能文献

基于分子和元素标志物的中国香港六个地点细颗粒物源解析。

Molecular and elemental marker-based source apportionment of fine particulate matter at six sites in Hong Kong, China.

机构信息

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Division of Environment & Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

出版信息

Sci Total Environ. 2022 Mar 20;813:152652. doi: 10.1016/j.scitotenv.2021.152652. Epub 2021 Dec 24.

Abstract

Source apportionment of PM was performed using positive matrix factorization (PMF) based on chemical speciation data from 24-h filters collected throughout 2015 at six sampling sites of varying urban influences in Hong Kong. The input data include major inorganic ions, organic and elemental carbon, elements, and organic tracers. Nine factors were resolved, including (1) secondary sulfate formation process, (2) secondary nitrate formation process, (3) industrial emissions, (4) biomass burning, (5) primary biogenic emissions, (6) vehicle emissions, (7) residual oil combustion, (8) dust, and (9) aged sea salt. The PMF-resolved factor contributions in conjunction with air mass back trajectories showed that the two major sources for PM mass, secondary sulfate (annual: 41%) and secondary nitrate (annual: 9.9%), were dominantly associated with regional and super-regional pollutant transport. Vehicular emissions are the most important local source, and its contributions exhibit a clear spatial variation pattern, with the highest (6.9 μg/m, 24% of PM) at a downtown roadside location and the lowest (0.4 μg/m, 2.0% PM) at two background sites away from city centers. The ability of producing a more reliable source separation and identifying new sources (e.g. primary biogenic source in this study) was a direct advantageous result of including organic tracers in the PMF analysis. PMF analysis conducted on the same dataset in this study but without including the organic tracers failed to separate the biomass burning emissions and industrial/coal combustion emissions. PMF analysis without the organic tracers would also over-apportion the contribution of vehicular emissions to PM, which would bias the evaluation of the effectiveness of vehicle-related control measures. This work demonstrates the importance of organic markers in achieving more comprehensive and less biased source apportionment results.

摘要

采用基于正矩阵因子分解(PMF)的方法,对香港六个具有不同城市影响的采样点在 2015 年全年采集的 24 小时滤膜上的化学物质进行了 PM 源解析。输入数据包括主要无机离子、有机碳和元素碳、元素和有机示踪剂。解析出了九个因子,包括(1)二次硫酸盐形成过程,(2)二次硝酸盐形成过程,(3)工业排放,(4)生物质燃烧,(5)原生生物排放,(6)车辆排放,(7)残余油燃烧,(8)粉尘,和(9)老化的海盐。PMF 解析的因子贡献以及大气质量后向轨迹表明,PM 质量的两个主要来源,二次硫酸盐(年:41%)和二次硝酸盐(年:9.9%),主要与区域和超区域污染物输送有关。车辆排放是最重要的本地源,其贡献呈现出明显的空间变化模式,在市区路边位置最高(6.9μg/m,占 PM 的 24%),在远离市中心的两个背景位置最低(0.4μg/m,占 PM 的 2.0%)。能够进行更可靠的源分离并识别新来源(例如本研究中的原生生物源)是在 PMF 分析中包含有机示踪剂的直接有利结果。本研究中对同一数据集进行的 PMF 分析但不包括有机示踪剂,未能分离生物质燃烧排放和工业/煤炭燃烧排放。没有有机示踪剂的 PMF 分析也会过高分配车辆排放对 PM 的贡献,从而影响对与车辆相关的控制措施的有效性的评估。这项工作证明了有机标志物在实现更全面和更少偏差的源解析结果方面的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验