Suppr超能文献

基于组合强化多任务渐进式时间序列网络的冠心病预测

Prediction of coronary heart disease based on combined reinforcement multitask progressive time-series networks.

作者信息

Li Wenqi, Zuo Ming, Zhao Hongjin, Xu Qi, Chen Dehua

机构信息

School of Computer Science and Technology, Donghua University, Shanghai, China; Artificial Intelligence Lab, China UnionPay Headquarters, Shanghai, China.

Glorious Sun School of Business and Management, Donghua University, Shanghai, China; Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

出版信息

Methods. 2022 Feb;198:96-106. doi: 10.1016/j.ymeth.2021.12.009. Epub 2021 Dec 23.

Abstract

Coronary heart disease is the first killer of human health. At present, the most widely used approach of coronary heart disease diagnosis is coronary angiography, a surgery that could potentially cause some physical damage to the patients, together with some complications and adverse reactions. Furthermore, coronary angiography is expensive thus cannot be widely used in under development country. On the other hand, the heart color Doppler echocardiography report, blood biochemical indicators and personal information, such as gender, age and diabetes, can reflect the degree of heart damage in patients to some extent. This paper proposes a combined reinforcement multitask progressive time-series networks (CRMPTN) model to predict the grade of coronary heart disease through heart color Doppler echocardiography report, blood biochemical indicators and ten basic body information items about the patients. In this model, the first step is to perform deep reinforcement learning (DRL) pre-training through asynchronous advantage actor-critic (A3C). Training data is adopted to optimize the recurrent neural network (RNN) that parameterizes the stochastic policy. In the second step, soft parameter sharing module, hard parameter sharing module and progressive time-series networks are used to predict the status of coronary heart disease. The experimental results show that after DRL pre-training, the multiple tasks in the model interact with each other and learn together to achieve satisfactory results and outperform other state-of-the-art methods.

摘要

冠心病是人类健康的头号杀手。目前,冠心病诊断最广泛使用的方法是冠状动脉造影,这是一种手术,可能会对患者造成一些身体损伤,以及一些并发症和不良反应。此外,冠状动脉造影费用高昂,因此无法在发展中国家广泛应用。另一方面,心脏彩色多普勒超声心动图报告、血液生化指标以及个人信息,如性别、年龄和糖尿病等,在一定程度上可以反映患者的心脏损伤程度。本文提出了一种组合强化多任务渐进时间序列网络(CRMPTN)模型,通过心脏彩色多普勒超声心动图报告、血液生化指标以及患者的十项基本身体信息来预测冠心病的等级。在该模型中,第一步是通过异步优势演员-评论家(A3C)进行深度强化学习(DRL)预训练。采用训练数据来优化参数化随机策略的循环神经网络(RNN)。第二步,使用软参数共享模块、硬参数共享模块和渐进时间序列网络来预测冠心病的状态。实验结果表明,经过DRL预训练后,模型中的多个任务相互作用并共同学习,取得了令人满意的结果,优于其他现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验