Suppr超能文献

一种用于草坪环境中物体识别的新型优化微小 YOLOv3 算法。

A novel optimized tiny YOLOv3 algorithm for the identification of objects in the lawn environment.

机构信息

School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.

出版信息

Sci Rep. 2022 Sep 6;12(1):15124. doi: 10.1038/s41598-022-19519-4.

Abstract

Based on the problem of insufficient accuracy of the original tiny YOLOv3 algorithm for object detection in a lawn environment, an Optimized tiny YOLOv3 algorithm with less computation and higher accuracy is proposed. Three reasons affect the accuracy of the original tiny YOLOv3 algorithm for detecting objects in a lawn environment. First, the backbone of the original algorithm is composed of a stack of a single convolutional layer and a max-pooling layer, which results in insufficient ability to extract feature information of objects. An enhancement module is proposed to enhance the feature extraction capability of the shallow layers of the network. Second, the information of the shallow convolutional layers of the backbone is not fully used, which results in insufficient detection capability for small objects. Third, the deep part of the backbone uses a convolutional layer with an excessive number of channels, which results in a large amount of computation. A multi-resolution fusion module is proposed to enhance the information interaction capability of the deep and shallow layers of the network, and reduce the computation. To verify the accuracy of this Optimized tiny YOLOv3 algorithm, the algorithm was tested on the dataset containing trunk, spherical tree and person, and compared with the current research. The results show that the algorithm proposed in this paper improves the detection accuracy while reducing the calculation.

摘要

基于原始微小 YOLOv3 算法在草坪环境中目标检测精度不足的问题,提出了一种计算量更小、精度更高的优化微小 YOLOv3 算法。有三个原因会影响原始微小 YOLOv3 算法在草坪环境中检测物体的准确性。首先,原始算法的骨干由单个卷积层和最大池化层堆栈组成,导致提取物体特征信息的能力不足。提出了增强模块来增强网络浅层的特征提取能力。其次,骨干的浅层卷积层的信息没有被充分利用,导致对小物体的检测能力不足。第三,骨干的深层部分使用了通道数量过多的卷积层,导致计算量很大。提出了一种多分辨率融合模块来增强网络深层和浅层的信息交互能力,减少计算量。为了验证这个优化微小 YOLOv3 算法的准确性,在包含树干、球形树和人的数据集上对该算法进行了测试,并与当前的研究进行了比较。结果表明,本文提出的算法在提高检测精度的同时降低了计算量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4076/9448759/ad795b28089a/41598_2022_19519_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验