Mogaka John Jo, Chimbari Moses J
Department of Public Health Medicine, University of KwaZulu-Natal Durban, South Africa.
Am J Transl Res. 2021 Nov 15;13(11):12557-12574. eCollection 2021.
Through recent advances in omics technologies, precision medicine (PM) promises to fundamentally change the way we approach health, disease and illness. Imperative applications of omics-based biomarkers are gradually moving from research to clinical settings, with huge long-term clinical and public health implications. Whereas much of research in PM is mainly focused on basic biomedical discoveries, currently there is little research on the clinical implementation of omics biomarkers, especially at health systems level.
This study investigated the application of multidimensional item response theory (IRT) models to validate a hypothesized PM implementation measurement model. This is a contribution to PM implementation at health systems level. Data obtained through an item-sort procedure involving 496 observations from 124 study participants formed the basis of a 22-item PMI measurement model.
Statistical significance of the bifactor model suggests PM implementation may have to be examined using factors that reflect a single common underlying implementation construct, as well as factors that reflect unique variances for the identified four content-specific factors.
随着组学技术的最新进展,精准医学有望从根本上改变我们对待健康、疾病和病患的方式。基于组学的生物标志物的重要应用正逐渐从研究转向临床环境,具有巨大的长期临床和公共卫生意义。虽然精准医学的许多研究主要集中在基础生物医学发现上,但目前关于组学生物标志物临床应用的研究很少,尤其是在卫生系统层面。
本研究调查了多维项目反应理论(IRT)模型在验证假设的精准医学实施测量模型中的应用。这是对卫生系统层面精准医学实施的一项贡献。通过一项项目排序程序获得的数据,涉及124名研究参与者的496次观察结果,构成了一个包含22个项目的精准医学实施测量模型的基础。
双因素模型的统计学意义表明,精准医学实施可能需要使用反映单一共同潜在实施结构的因素,以及反映已确定的四个特定内容因素独特方差的因素来进行检验。