Suppr超能文献

机器学习为深入了解基因对肝脏脂肪堆积的影响提供了新的视角。

Machine learning enables new insights into genetic contributions to liver fat accumulation.

作者信息

Haas Mary E, Pirruccello James P, Friedman Samuel N, Wang Minxian, Emdin Connor A, Ajmera Veeral H, Simon Tracey G, Homburger Julian R, Guo Xiuqing, Budoff Matthew, Corey Kathleen E, Zhou Alicia Y, Philippakis Anthony, Ellinor Patrick T, Loomba Rohit, Batra Puneet, Khera Amit V

机构信息

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

Department of Molecular Biology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

Cell Genom. 2021 Dec 8;1(3). doi: 10.1016/j.xgen.2021.100066.

Abstract

Excess liver fat, called hepatic steatosis, is a leading risk factor for end-stage liver disease and cardiometabolic diseases but often remains undiagnosed in clinical practice because of the need for direct imaging assessments. We developed an abdominal MRI-based machine-learning algorithm to accurately estimate liver fat (correlation coefficients, 0.97-0.99) from a truth dataset of 4,511 middle-aged UK Biobank participants, enabling quantification in 32,192 additional individuals. 17% of participants had predicted liver fat levels indicative of steatosis, and liver fat could not have been reliably estimated based on clinical factors such as BMI. A genome-wide association study of common genetic variants and liver fat replicated three known associations and identified five newly associated variants in or near the , , , , and genes (p < 3 × 10). A polygenic score integrating these eight genetic variants was strongly associated with future risk of chronic liver disease (hazard ratio > 1.32 per SD score, p < 9 × 10). Rare inactivating variants in the or genes were identified in 0.8% of individuals with steatosis and conferred more than 6-fold risk (p < 2 × 10), highlighting a molecular subtype of hepatic steatosis characterized by defective secretion of apolipoprotein B-containing lipoproteins. We demonstrate that our imaging-based machine-learning model accurately estimates liver fat and may be useful in epidemiological and genetic studies of hepatic steatosis.

摘要

肝脏脂肪过多,即肝脂肪变性,是终末期肝病和心脏代谢疾病的主要危险因素,但在临床实践中往往因需要进行直接成像评估而未被诊断出来。我们开发了一种基于腹部磁共振成像(MRI)的机器学习算法,可根据4511名英国生物银行中年参与者的真实数据集准确估计肝脏脂肪(相关系数为0.97 - 0.99),从而能够对另外32192人进行量化分析。17%的参与者预测肝脏脂肪水平表明存在脂肪变性,并且无法根据体重指数(BMI)等临床因素可靠地估计肝脏脂肪。一项关于常见基因变异与肝脏脂肪的全基因组关联研究重复了三个已知关联,并在、、、和基因中或其附近鉴定出五个新的相关变异(p < 3×10)。整合这八个基因变异的多基因评分与慢性肝病的未来风险密切相关(每标准差评分的风险比>1.32,p < 9×10)。在0.8%的脂肪变性个体中发现了或基因的罕见失活变异,其风险增加了6倍以上(p < 2×10),突出了一种以含载脂蛋白B的脂蛋白分泌缺陷为特征的肝脂肪变性分子亚型。我们证明,我们基于成像的机器学习模型能够准确估计肝脏脂肪,可能有助于肝脂肪变性的流行病学和遗传学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9c1/9903759/ad861f14e60c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验