Pegler Joseph L, Nguyen Duc Quan, Oultram Jackson M J, Grof Christopher P L, Eamens Andrew L
Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia.
Institute of Genome Research, Vietnam Academy of Research and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam.
Plants (Basel). 2021 Nov 24;10(12):2570. doi: 10.3390/plants10122570.
In plant cells, the molecular and metabolic processes of nucleic acid synthesis, phospholipid production, coenzyme activation and the generation of the vast amount of chemical energy required to drive these processes relies on an adequate supply of the essential macronutrient, phosphorous (P). The requirement of an appropriate level of P in plant cells is evidenced by the intricately linked molecular mechanisms of P sensing, signaling and transport. One such mechanism is the posttranscriptional regulation of the P response pathway by the highly conserved plant microRNA (miRNA), miR399. In addition to miR399, numerous other plant miRNAs are also required to respond to environmental stress, including miR396. Here, we exposed () transformant lines which harbor molecular modifications to the miR396 and miR399 expression modules to phosphate (PO) starvation. We show that molecular alteration of either miR396 or miR399 abundance afforded the transformant lines different degrees of tolerance to PO starvation. Furthermore, RT-qPCR assessment of PO-starved miR396 and miR399 transformants revealed that the tolerance displayed by these plant lines to this form of abiotic stress most likely stemmed from the altered expression of the target genes of these two miRNAs. Therefore, this study forms an early step towards the future development of molecularly modified plant lines which possess a degree of tolerance to growth in a PO deficient environment.
在植物细胞中,核酸合成、磷脂生成、辅酶激活以及驱动这些过程所需的大量化学能的产生等分子和代谢过程,依赖于必需大量营养素磷(P)的充足供应。植物细胞中对适当水平磷的需求,通过磷感知、信号传导和运输等错综复杂的分子机制得以体现。其中一种机制是高度保守的植物微小RNA(miRNA)miR399对磷响应途径的转录后调控。除了miR399,许多其他植物miRNA也参与对环境胁迫的响应,包括miR396。在此,我们使对miR396和miR399表达模块进行了分子修饰的()转化株系遭受磷酸盐(PO)饥饿处理。我们发现,miR396或miR399丰度的分子改变赋予了转化株系不同程度的耐PO饥饿能力。此外,对遭受PO饥饿的miR396和miR399转化株系进行的RT-qPCR评估表明,这些植物株系对这种非生物胁迫所表现出的耐受性很可能源于这两种miRNA靶基因表达的改变。因此,本研究为未来开发对缺磷环境生长具有一定耐受性的分子修饰植物株系迈出了第一步。