Suppr超能文献

使用可解释机器学习和数学模型检测阿尔茨海默病

Detection of Alzheimer's Disease using Explainable Machine Learning and Mathematical Models.

作者信息

Mahapatra Krishna, Selvakumar R

机构信息

Department of Mathematics, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

J Med Phys. 2025 Jan-Mar;50(1):131-139. doi: 10.4103/jmp.jmp_128_24. Epub 2025 Mar 24.

Abstract

PURPOSE

This study proposes a novel approach combining mathematical modeling and machine learning (ML) to classify four Alzheimer's disease (AD) stages from magnetic resonance imaging (MRI) scans.

METHODOLOGY

We first mapped each MRI pixel value matrix to a 2 × 2 matrix, using the techniques of forming a moment of inertia (MI) tensor, commonly used in physics to measure the mass distribution. Using the properties of the obtained inertia tensor and their eigenvalues, along with ML techniques, we classify the different stages of AD.

RESULTS

In this study, we have compared the performance of an intuitive mathematical model integrated with a machine learning approach across various ML models. Among them, the Gaussian Naïve Bayes classifier achieves the highest accuracy of 95.45%.

CONCLUSIONS

Beyond improved accuracy, our method offers potential for computational efficiency due to dimensionality reduction and provides novel physical insights into AD through inertia tensor analysis.

摘要

目的

本研究提出一种将数学建模与机器学习(ML)相结合的新方法,用于从磁共振成像(MRI)扫描中对阿尔茨海默病(AD)的四个阶段进行分类。

方法

我们首先使用在物理学中常用于测量质量分布的形成惯性矩(MI)张量的技术,将每个MRI像素值矩阵映射为一个2×2矩阵。利用所得惯性张量的性质及其特征值,结合ML技术,我们对AD的不同阶段进行分类。

结果

在本研究中,我们比较了在各种ML模型中集成机器学习方法的直观数学模型的性能。其中,高斯朴素贝叶斯分类器实现了最高准确率95.45%。

结论

除了提高准确率外,我们的方法由于降维而具有计算效率潜力,并通过惯性张量分析为AD提供了新的物理见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12005650/7ab30135f1a3/JMP-50-131-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验