Wang Junke, Branco Bruno, Remmerswaal Willemijn H M, Hu Shuaifeng, Schipper Nick R M, Zardetto Valerio, Bellini Laura, Daub Nicolas, Wienk Martijn M, Wakamiya Atsushi, Snaith Henry J, Janssen René A J
Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
Clarendon Laboratory, Department of Physics, Parks Road, Oxford, OX1 3PU, UK.
Nat Commun. 2025 Jan 2;16(1):174. doi: 10.1038/s41467-024-55654-4.
All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6-1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.
全钙钛矿串联光伏电池是一种具有潜在成本效益的技术,可用于为绿色氢等化学燃料生产提供动力。然而,它们的应用受到开路电压不足的限制,更具挑战性的是,光伏电池的运行稳定性较差。在此,我们报告了一种使用电化学流通池和全钙钛矿串联太阳能电池的实验室规模的太阳能辅助水分解系统。我们首先用丙烷 - 1,3 - 二碘化铵溶液处理钙钛矿表面,该溶液可减少界面非辐射复合损失,并在1.6 - 1.8 eV的带隙之间实现高于单结太阳能电池详细平衡极限90%的开路电压。具体而言,在1.77 eV的带隙下,实现了1.35 V的高开路电压和19.9%的最大功率转换效率。这使得在1平方厘米面积上的单片全钙钛矿串联太阳能电池的功率转换效率达到26.0%,并开创了一种太阳能 - 氢效率最高可达17.8%的光伏 - 电化学系统。该系统在运行超过180小时后仍保留其峰值性能的60%以上。我们发现性能损失主要是由于光伏组件的降解。我们观察到窄带隙子电池中存在严重的电荷收集损失,这可归因于窄带隙钙钛矿与空穴传输层之间的界面降解。我们的研究表明,开发化学稳定的吸收层和接触层对于全钙钛矿串联光伏电池的应用至关重要。