John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2105338118.
We present a numerical method specifically designed for simulating three-dimensional fluid-structure interaction (FSI) problems based on the reference map technique (RMT). The RMT is a fully Eulerian FSI numerical method that allows fluids and large-deformation elastic solids to be represented on a single fixed computational grid. This eliminates the need for meshing complex geometries typical in other FSI approaches and greatly simplifies the coupling between fluid and solids. We develop a three-dimensional implementation of the RMT, parallelized using the distributed memory paradigm, to simulate incompressible FSI with neo-Hookean solids. As part of our method, we develop a field extrapolation scheme that works efficiently in parallel. Through representative examples, we demonstrate the method's suitability in investigating many-body and active systems, as well as its accuracy and convergence. The examples include settling of a mixture of heavy and buoyant soft ellipsoids, lid-driven cavity flow containing a soft sphere, and swimmers actuated via active stress.
我们提出了一种专门设计的数值方法,基于参考映射技术(RMT)来模拟三维流固耦合(FSI)问题。RMT 是一种完全欧拉的 FSI 数值方法,允许在单个固定计算网格上表示流体和大变形弹性固体。这消除了在其他 FSI 方法中典型的对复杂几何形状进行网格划分的需要,并大大简化了流体和固体之间的耦合。我们开发了 RMT 的三维实现,使用分布式内存范例进行并行化,以模拟具有 neo-Hookean 固体的不可压缩 FSI。作为我们方法的一部分,我们开发了一种在并行环境下高效工作的场外推方案。通过代表性的例子,我们展示了该方法在研究多体和主动系统方面的适用性,以及其准确性和收敛性。这些例子包括重质和浮力软椭球体混合物的沉降、含有软球体的驱动盖腔流以及通过主动应力驱动的游泳者。