MIIT (Ministry of Industry and Information Technology) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University 637141 Singapore, Singapore.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2114964119.
Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler-polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.
混合基质膜(MMM)是用于节能型气体分离的最有前途的解决方案之一。然而,传统的 MMM 合成方法不可避免地导致较差的填充剂-聚合物界面相容性、填充剂团聚和有限的负载量。受自然界共生关系的启发,我们设计了一种通用的自下而上的方法,用于在聚合物基质中就地纳米尺寸金属有机骨架(MOF)的组装。因此,我们的方法消除了传统的后合成步骤,显著提高了 MOF 的分散性、界面相容性和负载量,在合成的 MMM 中达到了前所未有的 67.2wt%。利用实验技术和补充密度泛函理论(DFT)模拟,我们验证了这些增强协同改善了 CO 的溶解度,这与其他工作中 MOF 通常促进气体扩散的情况有明显不同。我们的方法同时提高了 CO 的渗透性和选择性,即使在长期测试中也能保持优异的碳捕获性能;即使在超高 MOF 负载量下,机械强度也得以保留。这种受共生启发的全新策略可能为下一代 MMM 铺平道路,充分利用 MOF 和基质的独特特性。