Guan Jian, Du Jingcheng, Sun Qian, He Wen, Ma Ji, Hassan Shabi Ui, Wu Ji, Zhang Hongjun, Zhang Sui, Liu Jiangtao
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore.
Sci Adv. 2025 Jan 24;11(4):eads0583. doi: 10.1126/sciadv.ads0583. Epub 2025 Jan 22.
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO permeability of 8803.4 barrer and CO/N selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO capture and other separation applications.
混合基质膜通过引入无机成分在聚合物基质内部具有精心设计的孔结构,为解决二氧化碳排放提供了一种有前景的解决方案。在此,我们合成了一系列新型金属有机笼(MOCs),其孔径精确地定位在二氧化碳与氮气或甲烷之间。这些MOCs均匀分散在固有微孔聚合物(PIM-1)中。其中,MOC-Ph笼有效地调节了链堆积并优化了膜的微孔结构。值得注意的是,PIM-Ph-5%膜表现出优异的性能,实现了8803.4巴耳的出色二氧化碳渗透率和59.9的二氧化碳/氮气选择性,远远超过了2019年的上限。这种方法为改善用于二氧化碳捕获和其他分离应用的聚合物膜的多孔结构开辟了机会。