Suppr超能文献

莪术根茎和薤白抑制一氧化氮产生和大麻素受体 2 下调。

Curcumae Longae Rhizoma and Saussureae Radix Inhibit Nitric Oxide Production and Cannabinoid Receptor 2 Down-regulation.

机构信息

Laboratory of Nutri-Pharmacotherapeutics Management, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan;

Laboratory of Pharmacognocy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan;

出版信息

In Vivo. 2022 Jan-Feb;36(1):227-232. doi: 10.21873/invivo.12695.

Abstract

BACKGROUND/AIM: The cannabinoid 2 (CB2) receptor is an important regulator of immunoinflammatory responses. Crude drugs commonly used in Japanese traditional Kampo medicine have displayed anti-inflammatory effects; however, few studies have reported that these effects are mediated via CB2 receptor signaling. Therefore, this study aimed to elucidate CB2 receptor-related anti-inflammatory regulation in crude drugs.

MATERIALS AND METHODS

The ethanol extracts of 34 crude drugs listed in the Japanese Pharmacopeia were tested, and the inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production were evaluated in murine macrophage RAW 264 cells.

RESULTS

The extracts of Curcumae Longae Rhizoma (dried rhizome of Curcuma longa) and Saussureae Radix (dried root of Saussurea lappa) significantly inhibited NO production and attenuated the LPS-induced decrease in CB2 receptor mRNA expression.

CONCLUSION

Curcumae Longae Rhizoma and Saussureae Radix can modulate the CB2-receptor-related anti-inflammatory regulation in macrophages.

摘要

背景/目的:大麻素 2(CB2)受体是免疫炎症反应的重要调节因子。日本传统汉方医学中常用的粗药具有抗炎作用;然而,很少有研究报道这些作用是通过 CB2 受体信号转导介导的。因此,本研究旨在阐明粗药中与 CB2 受体相关的抗炎调节作用。

材料和方法

对日本药典中列出的 34 种粗药的乙醇提取物进行了测试,并在小鼠巨噬细胞 RAW 264 细胞中评估了它们对脂多糖(LPS)诱导的一氧化氮(NO)产生的抑制作用。

结果

姜黄(姜黄的干燥根茎)和雪莲花(雪莲花的干燥根)的提取物显著抑制了 NO 的产生,并减轻了 LPS 诱导的 CB2 受体 mRNA 表达降低。

结论

姜黄和雪莲花可以调节巨噬细胞中与 CB2 受体相关的抗炎调节作用。

相似文献

2
[Nature-effect relationship research of Curcumae Longae Rhizoma,Curcumae Radix,and Curcumae Rhizoma based on nature combination].
Zhongguo Zhong Yao Za Zhi. 2019 Jan;44(2):229-234. doi: 10.19540/j.cnki.cjcmm.20180903.003.
5
Sources, morphology, phytochemistry, pharmacology of , , and : a review of the literature.
Front Pharmacol. 2023 Aug 31;14:1229963. doi: 10.3389/fphar.2023.1229963. eCollection 2023.
7
[Research on network pharmacology of Acori Tatarinowii Rhizoma combined with Curcumae Radix in treating epilepsy].
Zhongguo Zhong Yao Za Zhi. 2019 Jul;44(13):2701-2708. doi: 10.19540/j.cnki.cjcmm.20190416.403.
9
[Efficacy-related substances of blood-activating and stasis-resolving medicinals derived from Curcuma plants: a review].
Zhongguo Zhong Yao Za Zhi. 2022 Jan;47(1):24-35. doi: 10.19540/j.cnki.cjcmm.20210817.603.

引用本文的文献

本文引用的文献

1
Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases.
Mol Cell Biochem. 2021 Oct;476(10):3785-3814. doi: 10.1007/s11010-021-04201-6. Epub 2021 Jun 9.
2
Screening for inhibitory effects of crude drugs on furin-like enzymatic activities.
J Nat Med. 2021 Sep;75(4):1080-1085. doi: 10.1007/s11418-021-01519-9. Epub 2021 Apr 30.
6
The CB receptor and its role as a regulator of inflammation.
Cell Mol Life Sci. 2016 Dec;73(23):4449-4470. doi: 10.1007/s00018-016-2300-4. Epub 2016 Jul 11.
7
The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update.
Food Chem Toxicol. 2015 Sep;83:111-24. doi: 10.1016/j.fct.2015.05.022. Epub 2015 Jun 9.
8
Toll-like receptor signaling pathways.
Front Immunol. 2014 Sep 25;5:461. doi: 10.3389/fimmu.2014.00461. eCollection 2014.
10
Forsythin inhibits lipopolysaccharide-induced inflammation by suppressing JAK-STAT and p38 MAPK signalings and ROS production.
Inflamm Res. 2014 Jul;63(7):597-608. doi: 10.1007/s00011-014-0731-7. Epub 2014 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验