Suppr超能文献

基于机器学习的与肝细胞癌诊断相关的关键特征RNA标志物识别

Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma.

作者信息

Matboli Marwa, Diab Gouda I, Saad Maha, Khaled Abdelrahman, Roushdy Marian, Ali Marwa, ELsawi Hind A, Aboughaleb Ibrahim H

机构信息

Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt.

Biomedical Engineering Department, Egyptian Armed Forces, Cairo, Egypt.

出版信息

J Clin Exp Hepatol. 2024 Nov-Dec;14(6):101456. doi: 10.1016/j.jceh.2024.101456. Epub 2024 Jun 14.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is the third prime cause of malignancy-related mortality worldwide. Early and accurate identification of HCC is crucial for good prognosis, efficacy of therapy, and survival rates of the patients. We aimed to develop a machine-learning model incorporating differentially expressed RNA signatures with laboratory parameters to construct an RNA signature-based diagnostic model for HCC.

METHODS

We have used five classifiers (KNN, RF, SVM, LGBM, and DNNs) to predict the liver disease (HCC). The classifiers were trained on 187 samples and then tested on 80 samples. The model included 22 features (age, sex, smoking, cirrhosis, non-cirrhosis, albumin, ALT, AST bilirubin (total and direct), INR, AFP, HBV Ag, HCV Abs, RQmiR-1298, RQmiR-1262, RQmiR-106b-3p, RQmRNARAB11A, and RQSTAT1, RQmRNAATG12, RQLnc-WRAP53, RQLncRNA- RP11-513I15.6).

RESULTS

LGBM achieved the highest accuracy of 98.75% in predicting HCC among all models surpassing Random Forest (96.25%), DNN (91.25%), SVC (88.75%), and KNN (87.50%).

CONCLUSION

Our machine-learning model incorporating the expression data of RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 signature and clinical data represents a potential novel diagnostic model for HCC.

摘要

背景

肝细胞癌(HCC)是全球恶性肿瘤相关死亡的第三大主要原因。早期准确识别HCC对于患者的良好预后、治疗效果和生存率至关重要。我们旨在开发一种机器学习模型,将差异表达的RNA特征与实验室参数相结合,构建基于RNA特征的HCC诊断模型。

方法

我们使用了五种分类器(KNN、RF、SVM、LGBM和DNN)来预测肝病(HCC)。这些分类器在187个样本上进行训练,然后在80个样本上进行测试。该模型包括22个特征(年龄、性别、吸烟、肝硬化、非肝硬化、白蛋白、ALT、AST胆红素(总胆红素和直接胆红素)、INR、AFP、HBV抗原、HCV抗体、RQmiR-1298、RQmiR-1262、RQmiR-106b-3p、RQmRNARAB11A、RQSTAT1、RQmRNAATG12、RQLnc-WRAP53、RQLncRNA-RP11-513I15.6)。

结果

在所有模型中,LGBM在预测HCC方面达到了最高准确率98.75%,超过了随机森林(96.25%)、DNN(91.25%)、SVC(88.75%)和KNN(87.50%)。

结论

我们结合RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53特征的表达数据和临床数据的机器学习模型代表了一种潜在的新型HCC诊断模型。

相似文献

1
Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma.
J Clin Exp Hepatol. 2024 Nov-Dec;14(6):101456. doi: 10.1016/j.jceh.2024.101456. Epub 2024 Jun 14.
4
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.
Health Technol Assess. 2007 Sep;11(34):1-206. doi: 10.3310/hta11340.
6
Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.
BMC Infect Dis. 2025 Jul 1;25(1):847. doi: 10.1186/s12879-025-11199-5.
9
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.
10
Contrast-enhanced ultrasound for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.
Cochrane Database Syst Rev. 2022 Sep 2;9(9):CD013483. doi: 10.1002/14651858.CD013483.pub2.

引用本文的文献

1
Hepatocellular Carcinoma: Molecular Diagnosis and Perspectives for Therapy.
J Clin Exp Hepatol. 2024 Nov-Dec;14(6):102413. doi: 10.1016/j.jceh.2024.102413. Epub 2024 Sep 21.

本文引用的文献

2
Bioinformatics and machine learning driven key genes screening for hepatocellular carcinoma.
Biochem Biophys Rep. 2023 Nov 25;37:101587. doi: 10.1016/j.bbrep.2023.101587. eCollection 2024 Mar.
5
Serum-Exosome-Derived miRNAs Serve as Promising Biomarkers for HCC Diagnosis.
Cancers (Basel). 2022 Dec 29;15(1):205. doi: 10.3390/cancers15010205.
6
A Catalogue of Machine Learning Algorithms for Healthcare Risk Predictions.
Sensors (Basel). 2022 Nov 8;22(22):8615. doi: 10.3390/s22228615.
8
Global burden of primary liver cancer in 2020 and predictions to 2040.
J Hepatol. 2022 Dec;77(6):1598-1606. doi: 10.1016/j.jhep.2022.08.021. Epub 2022 Oct 5.
9
Rab11a promotes the malignant progression of ovarian cancer by inducing autophagy.
Genes Genomics. 2022 Nov;44(11):1375-1384. doi: 10.1007/s13258-022-01314-0. Epub 2022 Sep 20.
10
The prognostic value and clinical significance of mitophagy-related genes in hepatocellular carcinoma.
Front Genet. 2022 Aug 5;13:917584. doi: 10.3389/fgene.2022.917584. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验