利用随机森林探讨住院死亡率与医院病例量之间的关系:基于德国全国范围内医院样本的队列研究结果,2016-2018 年。

Exploring relationships between in-hospital mortality and hospital case volume using random forest: results of a cohort study based on a nationwide sample of German hospitals, 2016-2018.

机构信息

Center for Evidence-based Healthcare, University Hospital Carl Gustav Carus and Medical Faculty at the Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.

Quality and Medical Risk Management, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.

出版信息

BMC Health Serv Res. 2022 Jan 2;22(1):1. doi: 10.1186/s12913-021-07414-z.

Abstract

BACKGROUND

Relationships between in-hospital mortality and case volume were investigated for various patient groups in many empirical studies with mixed results. Typically, those studies relied on (semi-)parametric statistical models like logistic regression. Those models impose strong assumptions on the functional form of the relationship between outcome and case volume. The aim of this study was to determine associations between in-hospital mortality and hospital case volume using random forest as a flexible, nonparametric machine learning method.

METHODS

We analyzed a sample of 753,895 hospital cases with stroke, myocardial infarction, ventilation > 24 h, COPD, pneumonia, and colorectal cancer undergoing colorectal resection treated in 233 German hospitals over the period 2016-2018. We derived partial dependence functions from random forest estimates capturing the relationship between the patient-specific probability of in-hospital death and hospital case volume for each of the six considered patient groups.

RESULTS

Across all patient groups, the smallest hospital volumes were consistently related to the highest predicted probabilities of in-hospital death. We found strong relationships between in-hospital mortality and hospital case volume for hospitals treating a (very) small number of cases. Slightly higher case volumes were associated with substantially lower mortality. The estimated relationships between in-hospital mortality and case volume were nonlinear and nonmonotonic.

CONCLUSION

Our analysis revealed strong relationships between in-hospital mortality and hospital case volume in hospitals treating a small number of cases. The nonlinearity and nonmonotonicity of the estimated relationships indicate that studies applying conventional statistical approaches like logistic regression should consider these relationships adequately.

摘要

背景

许多实证研究针对不同患者群体,对住院死亡率与病例量之间的关系进行了调查,结果喜忧参半。这些研究通常依赖于逻辑回归等(半)参数统计模型。这些模型对结局与病例量之间的关系的函数形式施加了严格的假设。本研究旨在使用随机森林这一灵活的非参数机器学习方法,确定住院死亡率与医院病例量之间的关联。

方法

我们分析了 2016 年至 2018 年期间在德国 233 家医院接受治疗的 753895 例患有中风、心肌梗死、通气时间>24 小时、COPD、肺炎和接受结直肠切除术的结直肠癌患者的样本。我们从随机森林估计中得出了部分依赖函数,该函数捕获了考虑的六个患者群体中每个群体的患者特定住院死亡概率与医院病例量之间的关系。

结果

在所有患者群体中,最小的医院病例量始终与住院死亡率的最高预测概率相关。我们发现,治疗少量病例的医院与住院死亡率之间存在很强的关系。略高的病例量与死亡率显著降低相关。住院死亡率与病例量之间的估计关系是非线性和非单调的。

结论

我们的分析揭示了治疗少量病例的医院中住院死亡率与医院病例量之间的强关系。估计关系的非线性和非单调性表明,应用逻辑回归等传统统计方法的研究应充分考虑这些关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd7c/8722027/25f17885736a/12913_2021_7414_Fig1_HTML.jpg

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索