Suppr超能文献

利用认知任务中的数字生物标志物进行抑郁症的远程评估。

Remote Assessment of Depression Using Digital Biomarkers From Cognitive Tasks.

作者信息

Mandryk Regan L, Birk Max V, Vedress Sarah, Wiley Katelyn, Reid Elizabeth, Berger Phaedra, Frommel Julian

机构信息

Interaction Lab, Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.

Systemic Change Group, Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands.

出版信息

Front Psychol. 2021 Dec 15;12:767507. doi: 10.3389/fpsyg.2021.767507. eCollection 2021.

Abstract

We describe the design and evaluation of a sub-clinical digital assessment tool that integrates digital biomarkers of depression. Based on three standard cognitive tasks (D2 Test of Attention, Delayed Matching to Sample Task, Spatial Working Memory Task) on which people with depression have been known to perform differently than a control group, we iteratively designed a digital assessment tool that could be deployed outside of laboratory contexts, in uncontrolled home environments on computer systems with widely varying system characteristics (e.g., displays resolution, input devices). We conducted two online studies, in which participants used the assessment tool in their own homes, and completed subjective questionnaires including the Patient Health Questionnaire (PHQ-9)-a standard self-report tool for assessing depression in clinical contexts. In a first study ( = 269), we demonstrate that each task can be used in isolation to significantly predict PHQ-9 scores. In a second study ( = 90), we replicate these results and further demonstrate that when used in combination, behavioral metrics from the three tasks significantly predicted PHQ-9 scores, even when taking into account demographic factors known to influence depression such as age and gender. A multiple regression model explained 34.4% of variance in PHQ-9 scores with behavioral metrics from each task providing unique and significant contributions to the prediction.

摘要

我们描述了一种整合抑郁症数字生物标志物的亚临床数字评估工具的设计与评估。基于三项标准认知任务(注意力D2测试、延迟匹配样本任务、空间工作记忆任务),已知抑郁症患者在这些任务上的表现与对照组不同,我们迭代设计了一种数字评估工具,该工具可在实验室环境之外、在具有广泛不同系统特征(如显示分辨率、输入设备)的计算机系统上的不受控制的家庭环境中部署。我们进行了两项在线研究,参与者在自己家中使用评估工具,并完成主观问卷,包括患者健康问卷(PHQ - 9)——一种在临床环境中评估抑郁症的标准自我报告工具。在第一项研究(n = 269)中,我们证明每个任务都可单独用于显著预测PHQ - 9得分。在第二项研究(n = 90)中,我们重复了这些结果,并进一步证明,当三项任务结合使用时,即使考虑到已知会影响抑郁症的人口统计学因素(如年龄和性别),来自这三项任务的行为指标也能显著预测PHQ - 9得分。一个多元回归模型解释了PHQ - 9得分中34.4%的方差,每项任务的行为指标对预测都有独特且显著的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25bf/8714741/b2f6cfba36db/fpsyg-12-767507-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验