Cardinali Beatrice, Provenzano Claudia, Izzo Mariapaola, Voellenkle Christine, Battistini Jonathan, Strimpakos Georgios, Golini Elisabetta, Mandillo Silvia, Scavizzi Ferdinando, Raspa Marcello, Perfetti Alessandra, Baci Denisa, Lazarevic Dejan, Garcia-Manteiga Jose Manuel, Gourdon Geneviève, Martelli Fabio, Falcone Germana
Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy.
Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
Mol Ther Nucleic Acids. 2021 Nov 29;27:184-199. doi: 10.1016/j.omtn.2021.11.024. eCollection 2022 Mar 8.
CRISPR/Cas9-mediated therapeutic gene editing is a promising technology for durable treatment of incurable monogenic diseases such as myotonic dystrophies. Gene-editing approaches have been recently applied to and models of myotonic dystrophy type 1 (DM1) to delete the pathogenic CTG-repeat expansion located in the 3' untranslated region of the gene. In DM1-patient-derived cells removal of the expanded repeats induced beneficial effects on major hallmarks of the disease with reduction in transcript-containing ribonuclear foci and reversal of aberrant splicing patterns. Here, we set out to excise the triplet expansion in a time-restricted and cell-specific fashion to minimize the potential occurrence of unintended events in off-target genomic loci and select for the target cell type. To this aim, we employed either a ubiquitous promoter-driven or a muscle-specific promoter-driven Cas9 nuclease and tetracycline repressor-based guide RNAs. A dual-vector approach was used to deliver the CRISPR/Cas9 components into DM1 patient-derived cells and in skeletal muscle of a DM1 mouse model. In this way, we obtained efficient and inducible gene editing both in proliferating cells and differentiated post-mitotic myocytes as well as in skeletal muscle tissue .
CRISPR/Cas9介导的治疗性基因编辑是一种有前景的技术,可用于持久治疗诸如强直性肌营养不良等无法治愈的单基因疾病。基因编辑方法最近已应用于1型强直性肌营养不良(DM1)的细胞和动物模型,以删除位于基因3'非翻译区的致病性CTG重复扩增序列。在源自DM1患者的细胞中,去除扩增的重复序列对疾病的主要特征产生了有益影响,含RNA转录本的核糖核蛋白灶减少,异常剪接模式得到逆转。在此,我们着手以时间限制和细胞特异性的方式切除三联体扩增,以尽量减少脱靶基因组位点意外事件的潜在发生,并选择目标细胞类型。为此,我们使用了普遍启动子驱动或肌肉特异性启动子驱动的Cas9核酸酶以及基于四环素阻遏物的引导RNA。采用双载体方法将CRISPR/Cas9组件导入源自DM1患者的细胞和DM1小鼠模型的骨骼肌中。通过这种方式,我们在增殖细胞、分化后的有丝分裂后肌细胞以及骨骼肌组织中均获得了高效且可诱导的基因编辑。