Suppr超能文献

基于低剂量CT图像的肺结节恶性预测的放射组学与深度学习方法的比较研究

A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images.

作者信息

Astaraki Mehdi, Yang Guang, Zakko Yousuf, Toma-Dasu Iuliana, Smedby Örjan, Wang Chunliang

机构信息

Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden.

Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.

出版信息

Front Oncol. 2021 Dec 17;11:737368. doi: 10.3389/fonc.2021.737368. eCollection 2021.

Abstract

OBJECTIVES

Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this study, we try to compare the performance of a series of carefully selected conventional radiomics methods, end-to-end deep learning models, and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction on an open database that consists of 1297 manually delineated lung nodules.

METHODS

Conventional radiomics analysis was conducted by extracting standard handcrafted features from target nodule images. Several end-to-end deep classifier networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to identify lung nodule malignancy as well. In addition to the baseline implementations, we also investigated the importance of feature selection and class balancing, as well as separating the features learned in the nodule target region and the background/context region. By pooling the radiomics and deep features together in a hybrid feature set, we investigated the compatibility of these two sets with respect to malignancy prediction.

RESULTS

The best baseline conventional radiomics model, deep learning model, and deep-feature based radiomics model achieved AUROC values (mean ± standard deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through 5-fold cross-validation analyses. However, after trying out several optimization techniques, such as feature selection and data balancing, as well as adding context features, the corresponding best radiomics, end-to-end deep learning, and deep-feature based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ± 0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set (AUROC: 0.938 ± 0.010).

CONCLUSION

The end-to-end deep-learning model outperforms conventional radiomics out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to significant improvements in the prediction performance where the conventional and deep-feature based radiomics models achieved comparable results. The hybrid radiomics method seems to be the most promising model for lung nodule malignancy prediction in this comparative study.

摘要

目的

在各种基于图像的肿瘤学研究中,放射组学和深度学习方法在预测病变恶性程度方面都显示出了巨大的潜力。然而,在可获得相同数量训练数据的情况下,对于特定临床问题该选择哪种方法仍不明确。在本研究中,我们试图在一个包含1297个手动勾勒的肺结节的开放数据库上,比较一系列精心挑选的传统放射组学方法、端到端深度学习模型以及基于深度特征的放射组学流程在肺结节恶性程度预测方面的性能。

方法

通过从目标结节图像中提取标准的手工特征进行传统放射组学分析。还采用了几个端到端深度分类器网络,包括VGG、ResNet、DenseNet和EfficientNet来识别肺结节的恶性程度。除了基线实现外,我们还研究了特征选择和类别平衡的重要性,以及区分在结节目标区域和背景/上下文区域中学习到的特征。通过将放射组学和深度特征合并到一个混合特征集中,我们研究了这两组特征在恶性程度预测方面的兼容性。

结果

通过5折交叉验证分析,最佳的基线传统放射组学模型、深度学习模型和基于深度特征的放射组学模型分别实现了0.792±0.025、0.801±0.018和0.817±0.032的AUROC值(均值±标准差)。然而,在尝试了几种优化技术,如特征选择和数据平衡,以及添加上下文特征后,相应的最佳放射组学、端到端深度学习和基于深度特征的模型分别实现了0.921±0.010、0.824±0.021和0.936±0.011的AUROC值。我们从混合特征集中获得了最佳预测准确率(AUROC:0.938±0.010)。

结论

端到端深度学习模型在未经太多微调的情况下优于传统放射组学。另一方面,对模型进行微调会显著提高预测性能,此时传统放射组学模型和基于深度特征的放射组学模型取得了可比的结果。在这项比较研究中,混合放射组学方法似乎是肺结节恶性程度预测最有前景的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a02/8718670/1bb83a8686a8/fonc-11-737368-g001.jpg

相似文献

2
Efficient pulmonary nodules classification using radiomics and different artificial intelligence strategies.
Insights Imaging. 2023 May 18;14(1):91. doi: 10.1186/s13244-023-01441-6.
3
Fusing radiomics and deep learning features for automated classification of multi-type pulmonary nodule.
Med Phys. 2025 Jul;52(7):e17901. doi: 10.1002/mp.17901. Epub 2025 May 20.
4
Prediction of benign and malignant ground glass pulmonary nodules based on multi-feature fusion of attention mechanism.
Front Oncol. 2024 Oct 9;14:1447132. doi: 10.3389/fonc.2024.1447132. eCollection 2024.
5
Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images.
Eur Radiol. 2024 Jul;34(7):4218-4229. doi: 10.1007/s00330-023-10518-1. Epub 2023 Dec 20.
8
Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.
Med Phys. 2018 Apr;45(4):1537-1549. doi: 10.1002/mp.12820. Epub 2018 Mar 12.

引用本文的文献

1
Deep learning radiomics nomogram predicts lymph node metastasis in laryngeal squamous cell carcinoma.
Front Oncol. 2025 Aug 12;15:1573687. doi: 10.3389/fonc.2025.1573687. eCollection 2025.
2
Advanced hybrid deep learning model for enhanced evaluation of osteosarcoma histopathology images.
Front Med (Lausanne). 2025 Apr 16;12:1555907. doi: 10.3389/fmed.2025.1555907. eCollection 2025.
6
Radiomic features add incremental benefit to conventional radiological feature-based differential diagnosis of lung nodules.
Eur Radiol. 2025 Jun;35(6):2968-2978. doi: 10.1007/s00330-024-11221-5. Epub 2024 Nov 27.
9
A Multichannel CT and Radiomics-Guided CNN-ViT (RadCT-CNNViT) Ensemble Network for Diagnosis of Pulmonary Sarcoidosis.
Diagnostics (Basel). 2024 May 18;14(10):1049. doi: 10.3390/diagnostics14101049.
10
EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC.
J Imaging Inform Med. 2024 Jun;37(3):1086-1099. doi: 10.1007/s10278-024-01022-z. Epub 2024 Feb 15.

本文引用的文献

2
Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features.
Phys Med. 2021 Mar;83:146-153. doi: 10.1016/j.ejmp.2021.03.013. Epub 2021 Mar 25.
3
Radiomics in the evaluation of lung nodules: Intrapatient concordance between full-dose and ultra-low-dose chest computed tomography.
Diagn Interv Imaging. 2021 Apr;102(4):233-239. doi: 10.1016/j.diii.2021.01.010. Epub 2021 Feb 11.
4
Memory-Augmented Capsule Network for Adaptable Lung Nodule Classification.
IEEE Trans Med Imaging. 2021 Oct;40(10):2869-2879. doi: 10.1109/TMI.2021.3051089. Epub 2021 Sep 30.
5
MSCS-DeepLN: Evaluating lung nodule malignancy using multi-scale cost-sensitive neural networks.
Med Image Anal. 2020 Oct;65:101772. doi: 10.1016/j.media.2020.101772. Epub 2020 Jul 8.
6
Convolutional Neural Network ensembles for accurate lung nodule malignancy prediction 2 years in the future.
Comput Biol Med. 2020 Jul;122:103882. doi: 10.1016/j.compbiomed.2020.103882. Epub 2020 Jun 24.
9
Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping.
Med Image Anal. 2020 Feb;60:101628. doi: 10.1016/j.media.2019.101628. Epub 2019 Dec 12.
10
Multi-Task Deep Model With Margin Ranking Loss for Lung Nodule Analysis.
IEEE Trans Med Imaging. 2020 Mar;39(3):718-728. doi: 10.1109/TMI.2019.2934577. Epub 2019 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验