Letchumanan Nishta, Hanaoka Shouhei, Takenaga Tomomi, Suzuki Yusuke, Nakao Takahiro, Nomura Yukihiro, Yoshikawa Takeharu, Abe Osamu
The University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo, Japan.
The University of Tokyo Hospital, Department of Radiology, Tokyo, Japan.
J Med Imaging (Bellingham). 2025 Jan;12(1):014501. doi: 10.1117/1.JMI.12.1.014501. Epub 2025 Jan 6.
The prevalence of type 2 diabetes mellitus (T2DM) has been steadily increasing over the years. We aim to predict the occurrence of T2DM using mammography images within 5 years using two different methods and compare their performance.
We examined 312 samples, including 110 positive cases (developed T2DM after 5 years) and 202 negative cases (did not develop T2DM) using two different methods. In the first method, a radiomics-based approach, we utilized radiomics features and machine learning (ML) algorithms. The entire breast region was chosen as the region of interest for extracting radiomics features. Then, a binary breast image was created from which we extracted 668 features and analyzed them using various ML algorithms. In the second method, a complex convolutional neural network (CNN) with a modified ResNet architecture and various kernel sizes was applied to raw mammography images for the prediction task. A nested, stratified five-fold cross-validation was done for both parts A and B to compute accuracy, sensitivity, specificity, and area under the receiver operating curve (AUROC). Hyperparameter tuning was also done to enhance the model's performance and reliability.
The radiomics approach's light gradient boosting model gave 68.9% accuracy, 30.7% sensitivity, 89.5% specificity, and 0.63 AUROC. The CNN method achieved an AUROC of 0.58 over 20 epochs.
Radiomics outperformed CNN by 0.05 in terms of AUROC. This may be due to the more straightforward interpretability and clinical relevance of predefined radiomics features compared with the complex, abstract features learned by CNNs.
多年来,2型糖尿病(T2DM)的患病率一直在稳步上升。我们旨在使用两种不同方法,通过乳房X光图像预测5年内T2DM的发生情况,并比较它们的性能。
我们使用两种不同方法检查了312个样本,包括110个阳性病例(5年后发展为T2DM)和202个阴性病例(未发展为T2DM)。在第一种基于放射组学的方法中,我们利用了放射组学特征和机器学习(ML)算法。选择整个乳房区域作为提取放射组学特征的感兴趣区域。然后,创建一个二元乳房图像,从中提取668个特征,并使用各种ML算法进行分析。在第二种方法中,将具有修改后的ResNet架构和各种内核大小的复杂卷积神经网络(CNN)应用于原始乳房X光图像以进行预测任务。对A部分和B部分都进行了嵌套分层五折交叉验证,以计算准确率、灵敏度、特异性和受试者工作特征曲线下面积(AUROC)。还进行了超参数调整,以提高模型的性能和可靠性。
放射组学方法的轻梯度提升模型的准确率为68.9%,灵敏度为30.7%,特异性为89.5%,AUROC为0.63。CNN方法在20个轮次中的AUROC为0.58。
在AUROC方面,放射组学比CNN高出0.05。这可能是因为与CNN学习的复杂抽象特征相比,预定义放射组学特征的解释性更直接且与临床相关性更强。