Suppr超能文献

使用多模态 MRI 数据对低功能自闭症谱系障碍幼儿进行分类。

Classification of Preschoolers with Low-Functioning Autism Spectrum Disorder Using Multimodal MRI Data.

机构信息

Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea.

Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea.

出版信息

J Autism Dev Disord. 2023 Jan;53(1):25-37. doi: 10.1007/s10803-021-05368-z. Epub 2022 Jan 4.

Abstract

Multimodal imaging studies targeting preschoolers and low-functioning autism spectrum disorder (ASD) patients are scarce. We applied machine learning classifiers to parameters from T1-weighted MRI and DTI data of 58 children with ASD (age 3-6 years) and 48 typically developing controls (TDC). Classification performance reached an accuracy, sensitivity, and specificity of 88.8%, 93.0%, and 83.8%, respectively. The most prominent features were the cortical thickness of the right inferior occipital gyrus, mean diffusivity of the middle cerebellar peduncle, and nodal efficiency of the left posterior cingulate gyrus. Machine learning-based analysis of MRI data was useful in distinguishing low-functioning ASD preschoolers from TDCs. Combination of T1 and DTI improved classification accuracy about 10%, and large-scale multi-modal MRI studies are warranted for external validation.

摘要

针对学龄前儿童和低功能自闭症谱系障碍(ASD)患者的多模态影像学研究较为匮乏。我们应用机器学习分类器对 58 名 ASD 儿童(年龄 3-6 岁)和 48 名典型发育对照者(TDC)的 T1 加权 MRI 和 DTI 数据的参数进行分析。分类性能的准确性、敏感性和特异性分别达到 88.8%、93.0%和 83.8%。最显著的特征是右侧下枕叶皮质厚度、小脑中脑脚平均弥散度和左后扣带回节点效率。基于机器学习的 MRI 数据分析有助于区分低功能 ASD 学龄前儿童和 TDC。T1 和 DTI 的组合可将分类准确性提高约 10%,需要进行大规模的多模态 MRI 研究以进行外部验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验