Suppr超能文献

一种使用DDINet进行药物相互作用预测的新型深度序列学习架构。

A novel deep sequential learning architecture for drug drug interaction prediction using DDINet.

作者信息

Halder Anindya, Saha Biswanath, Roy Moumita, Majumder Sukanta

机构信息

Department of Computer Application, School of Technology, North-Eastern Hill University, Tura Campus, Tura, Meghalaya, 794002, India.

Department of Computer Science and Engineering, University of Kalyani, Kalyani, West Bengal, 741235, India.

出版信息

Sci Rep. 2025 Mar 18;15(1):9337. doi: 10.1038/s41598-025-93952-z.

Abstract

Drug drug Interactions (DDI) present considerable challenges in healthcare, often resulting in adverse effects or decreased therapeutic efficacy. This article proposes a novel deep sequential learning architecture called DDINet to predict and classify DDIs between pairs of drugs based on different mechanisms viz., Excretion, Absorption, Metabolism, and Excretion rate (higher serum level) etc. Chemical features such as Hall Smart, Amino Acid count and Carbon types are extracted from each drug (pairs) to apply as an input to the proposed model. Proposed DDINet incorporates attention mechanism and deep sequential learning architectures, such as Long Short-Term Memory and gated recurrent unit. It utilizes the Rcpi toolkit to extract biochemical features of drugs from their chemical composition in Simplified Molecular-Input Line-Entry System format. Experiments are conducted on publicly available DDI datasets from DrugBank and Kaggle. The model's efficacy in predicting and classifying DDIs is evaluated using various performance measures. The experimental results show that DDINet outperformed eight counterpart techniques achieving [Formula: see text] overall accuracy which is also statistically confirmed by Confidence Interval tests and paired t-tests. This architecture may act as an effective computational technique for drug drug interaction with respect to mechanism which may act as a complementary tool to reduce costly wet lab experiments for DDI prediction and classification.

摘要

药物相互作用(DDI)给医疗保健带来了巨大挑战,常常导致不良反应或治疗效果降低。本文提出了一种名为DDINet的新型深度序列学习架构,用于根据不同机制(即排泄、吸收、代谢和排泄率(血清水平较高)等)预测和分类药物对之间的DDI。从每种药物(药物对)中提取诸如霍尔智能、氨基酸计数和碳类型等化学特征,作为所提出模型的输入。所提出的DDINet结合了注意力机制和深度序列学习架构,如长短期记忆和门控循环单元。它利用Rcpi工具包从简化分子输入线性条目系统格式的药物化学成分中提取药物的生化特征。在来自DrugBank和Kaggle的公开可用DDI数据集上进行实验。使用各种性能指标评估该模型在预测和分类DDI方面的有效性。实验结果表明,DDINet优于八种对应技术,实现了[公式:见文本]的总体准确率,置信区间测试和配对t检验也从统计学上证实了这一点。这种架构可能作为一种有效的计算技术,用于基于机制的药物相互作用,这可能作为一种补充工具,以减少用于DDI预测和分类的昂贵的湿实验室实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a942/11920219/cd0d3c8beaee/41598_2025_93952_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验