School of Biomedical Engineering, Capital Medical University, Beijing, China.
Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.
J Med Internet Res. 2022 Jan 6;24(1):e30720. doi: 10.2196/30720.
BACKGROUND: Sequential information in electronic medical records is valuable and helpful for patient outcome prediction but is rarely used for patient similarity measurement because of its unevenness, irregularity, and heterogeneity. OBJECTIVE: We aimed to develop a patient similarity framework for patient outcome prediction that makes use of sequential and cross-sectional information in electronic medical record systems. METHODS: Sequence similarity was calculated from timestamped event sequences using edit distance, and trend similarity was calculated from time series using dynamic time warping and Haar decomposition. We also extracted cross-sectional information, namely, demographic, laboratory test, and radiological report data, for additional similarity calculations. We validated the effectiveness of the framework by constructing k-nearest neighbors classifiers to predict mortality and readmission for acute myocardial infarction patients, using data from (1) a public data set and (2) a private data set, at 3 time points-at admission, on Day 7, and at discharge-to provide early warning patient outcomes. We also constructed state-of-the-art Euclidean-distance k-nearest neighbor, logistic regression, random forest, long short-term memory network, and recurrent neural network models, which were used for comparison. RESULTS: With all available information during a hospitalization episode, predictive models using the similarity model outperformed baseline models based on both public and private data sets. For mortality predictions, all models except for the logistic regression model showed improved performances over time. There were no such increasing trends in predictive performances for readmission predictions. The random forest and logistic regression models performed best for mortality and readmission predictions, respectively, when using information from the first week after admission. CONCLUSIONS: For patient outcome predictions, the patient similarity framework facilitated sequential similarity calculations for uneven electronic medical record data and helped improve predictive performance.
背景:电子病历中的时序信息对于患者预后预测具有重要价值和帮助,但由于其不均匀、不规则和异质性,很少用于患者相似度测量。
目的:我们旨在开发一种患者相似性框架,用于患者预后预测,该框架利用电子病历系统中的时序和横断面信息。
方法:使用编辑距离计算来自时间戳事件序列的序列相似度,使用动态时间规整和 Haar 分解计算时间序列的趋势相似度。我们还提取了横断面信息,即人口统计学、实验室检查和放射报告数据,用于额外的相似度计算。我们通过构建 k-最近邻分类器来验证框架的有效性,以预测急性心肌梗死患者的死亡率和再入院率,使用数据来自 (1) 公共数据集和 (2) 私人数据集,在 3 个时间点 - 入院时、第 7 天和出院时 - 提供早期预警患者结局。我们还构建了基于欧几里得距离的 k-最近邻、逻辑回归、随机森林、长短期记忆网络和递归神经网络模型,用于比较。
结果:在住院期间的所有可用信息中,使用相似性模型的预测模型在公共和私人数据集上均优于基于基线模型的预测模型。对于死亡率预测,除了逻辑回归模型外,所有模型的性能都随着时间的推移而提高。对于再入院预测,预测性能没有这样的提高趋势。随机森林和逻辑回归模型在使用入院后第一周的信息时,分别对死亡率和再入院预测表现最佳。
结论:对于患者预后预测,患者相似性框架促进了对不均匀电子病历数据的时序相似性计算,并有助于提高预测性能。
J Med Internet Res. 2022-1-6
BMC Med Inform Decis Mak. 2021-7-30
BMC Med Inform Decis Mak. 2020-10-29
Artif Intell Med. 2019-7-25
J Med Internet Res. 2020-10-23
Big Data. 2020-10
AMIA Jt Summits Transl Sci Proc. 2025-6-10
BMJ Ment Health. 2023-6
BMC Med Inform Decis Mak. 2021-7-30
Comput Methods Programs Biomed. 2021-6
BMC Med Inform Decis Mak. 2020-10-29
J Biomed Inform. 2020-9
NPJ Digit Med. 2018-5-8
Sci Data. 2019-6-17
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018-6
IEEE Trans Nanobioscience. 2018-5-16