文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于序列数据的患者相似性框架用于患者预后预测:算法开发。

Sequential Data-Based Patient Similarity Framework for Patient Outcome Prediction: Algorithm Development.

机构信息

School of Biomedical Engineering, Capital Medical University, Beijing, China.

Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.

出版信息

J Med Internet Res. 2022 Jan 6;24(1):e30720. doi: 10.2196/30720.


DOI:10.2196/30720
PMID:34989682
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8778569/
Abstract

BACKGROUND: Sequential information in electronic medical records is valuable and helpful for patient outcome prediction but is rarely used for patient similarity measurement because of its unevenness, irregularity, and heterogeneity. OBJECTIVE: We aimed to develop a patient similarity framework for patient outcome prediction that makes use of sequential and cross-sectional information in electronic medical record systems. METHODS: Sequence similarity was calculated from timestamped event sequences using edit distance, and trend similarity was calculated from time series using dynamic time warping and Haar decomposition. We also extracted cross-sectional information, namely, demographic, laboratory test, and radiological report data, for additional similarity calculations. We validated the effectiveness of the framework by constructing k-nearest neighbors classifiers to predict mortality and readmission for acute myocardial infarction patients, using data from (1) a public data set and (2) a private data set, at 3 time points-at admission, on Day 7, and at discharge-to provide early warning patient outcomes. We also constructed state-of-the-art Euclidean-distance k-nearest neighbor, logistic regression, random forest, long short-term memory network, and recurrent neural network models, which were used for comparison. RESULTS: With all available information during a hospitalization episode, predictive models using the similarity model outperformed baseline models based on both public and private data sets. For mortality predictions, all models except for the logistic regression model showed improved performances over time. There were no such increasing trends in predictive performances for readmission predictions. The random forest and logistic regression models performed best for mortality and readmission predictions, respectively, when using information from the first week after admission. CONCLUSIONS: For patient outcome predictions, the patient similarity framework facilitated sequential similarity calculations for uneven electronic medical record data and helped improve predictive performance.

摘要

背景:电子病历中的时序信息对于患者预后预测具有重要价值和帮助,但由于其不均匀、不规则和异质性,很少用于患者相似度测量。

目的:我们旨在开发一种患者相似性框架,用于患者预后预测,该框架利用电子病历系统中的时序和横断面信息。

方法:使用编辑距离计算来自时间戳事件序列的序列相似度,使用动态时间规整和 Haar 分解计算时间序列的趋势相似度。我们还提取了横断面信息,即人口统计学、实验室检查和放射报告数据,用于额外的相似度计算。我们通过构建 k-最近邻分类器来验证框架的有效性,以预测急性心肌梗死患者的死亡率和再入院率,使用数据来自 (1) 公共数据集和 (2) 私人数据集,在 3 个时间点 - 入院时、第 7 天和出院时 - 提供早期预警患者结局。我们还构建了基于欧几里得距离的 k-最近邻、逻辑回归、随机森林、长短期记忆网络和递归神经网络模型,用于比较。

结果:在住院期间的所有可用信息中,使用相似性模型的预测模型在公共和私人数据集上均优于基于基线模型的预测模型。对于死亡率预测,除了逻辑回归模型外,所有模型的性能都随着时间的推移而提高。对于再入院预测,预测性能没有这样的提高趋势。随机森林和逻辑回归模型在使用入院后第一周的信息时,分别对死亡率和再入院预测表现最佳。

结论:对于患者预后预测,患者相似性框架促进了对不均匀电子病历数据的时序相似性计算,并有助于提高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/3dc7d9c14903/jmir_v24i1e30720_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/ae2701784cbe/jmir_v24i1e30720_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/0d84722cad53/jmir_v24i1e30720_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/c4e7939c74c1/jmir_v24i1e30720_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/3dc7d9c14903/jmir_v24i1e30720_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/ae2701784cbe/jmir_v24i1e30720_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/0d84722cad53/jmir_v24i1e30720_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/c4e7939c74c1/jmir_v24i1e30720_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/8778569/3dc7d9c14903/jmir_v24i1e30720_fig4.jpg

相似文献

[1]
Sequential Data-Based Patient Similarity Framework for Patient Outcome Prediction: Algorithm Development.

J Med Internet Res. 2022-1-6

[2]
Study on the semi-supervised learning-based patient similarity from heterogeneous electronic medical records.

BMC Med Inform Decis Mak. 2021-7-30

[3]
COVID-19 Mortality Prediction From Deep Learning in a Large Multistate Electronic Health Record and Laboratory Information System Data Set: Algorithm Development and Validation.

J Med Internet Res. 2021-9-28

[4]
Development of Electronic Health Record-Based Prediction Models for 30-Day Readmission Risk Among Patients Hospitalized for Acute Myocardial Infarction.

JAMA Netw Open. 2021-1-4

[5]
Combining structured and unstructured data for predictive models: a deep learning approach.

BMC Med Inform Decis Mak. 2020-10-29

[6]
Implementation and evaluation of a multivariate abstraction-based, interval-based dynamic time-warping method as a similarity measure for longitudinal medical records.

J Biomed Inform. 2021-11

[7]
Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.

Lancet Digit Health. 2020-4

[8]
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.

Artif Intell Med. 2019-7-25

[9]
Clinical Context-Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation.

J Med Internet Res. 2020-10-23

[10]
Graph Neural Network-Based Diagnosis Prediction.

Big Data. 2020-10

引用本文的文献

[1]
Autoencoder-Based Representation Learning for Similar Patients Retrieval From Electronic Health Records: Comparative Study.

JMIR Med Inform. 2025-7-24

[2]
A Comparative Analysis of Patient Similarity Measures for Outcome Prediction.

AMIA Jt Summits Transl Sci Proc. 2025-6-10

[3]
Machine Learning Applications in Acute Coronary Syndrome: Diagnosis, Outcomes and Management.

Adv Ther. 2025-2

[4]
A Patient Similarity Network (CHDmap) to Predict Outcomes After Congenital Heart Surgery: Development and Validation Study.

JMIR Med Inform. 2024-1-19

[5]
Year 2022 in Medical Natural Language Processing: Availability of Language Models as a Step in the Democratization of NLP in the Biomedical Area.

Yearb Med Inform. 2023-8

[6]
The predictive value of machine learning for mortality risk in patients with acute coronary syndromes: a systematic review and meta-analysis.

Eur J Med Res. 2023-10-20

[7]
Predicting outcomes at the individual patient level: what is the best method?

BMJ Ment Health. 2023-6

[8]
Improving the Performance of Outcome Prediction for Inpatients With Acute Myocardial Infarction Based on Embedding Representation Learned From Electronic Medical Records: Development and Validation Study.

J Med Internet Res. 2022-8-3

本文引用的文献

[1]
Study on the semi-supervised learning-based patient similarity from heterogeneous electronic medical records.

BMC Med Inform Decis Mak. 2021-7-30

[2]
An explainable machine learning algorithm for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission.

Comput Methods Programs Biomed. 2021-6

[3]
Development and validation of a prognostic nomogram for myocardial infarction patients in intensive care units: a retrospective cohort study.

BMJ Open. 2020-12-17

[4]
Combining structured and unstructured data for predictive models: a deep learning approach.

BMC Med Inform Decis Mak. 2020-10-29

[5]
Endpoint prediction of heart failure using electronic health records.

J Biomed Inform. 2020-9

[6]
Measurement and application of patient similarity in personalized predictive modeling based on electronic medical records.

Biomed Eng Online. 2019-10-11

[7]
Scalable and accurate deep learning with electronic health records.

NPJ Digit Med. 2018-5-8

[8]
Multitask learning and benchmarking with clinical time series data.

Sci Data. 2019-6-17

[9]
[Analysis of diseases distribution in Medical Information Mart for Intensive Care III database].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018-6

[10]
Deep Patient Similarity Learning for Personalized Healthcare.

IEEE Trans Nanobioscience. 2018-5-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索