Suppr超能文献

控制脂滴形成初始阶段的关键因素。

Key Factors Governing Initial Stages of Lipid Droplet Formation.

机构信息

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637 United States.

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 United States.

出版信息

J Phys Chem B. 2022 Jan 20;126(2):453-462. doi: 10.1021/acs.jpcb.1c09683. Epub 2022 Jan 6.

Abstract

Lipid droplets (LDs) are neutral lipid storage organelles surrounded by a phospholipid (PL) monolayer. LD biogenesis from the endoplasmic reticulum is driven by phase separation of neutral lipids, overcoming surface tension and membrane deformation. However, the core biophysics of the initial steps of LD formation remains relatively poorly understood. Here, we use a tunable, phenomenological coarse-grained model to study triacylglycerol (TG) nucleation in a bilayer membrane. We show that PL rigidity has a strong influence on TG lensing and membrane remodeling: when membrane rigidity increases, TG clusters remain more planar with high anisotropy but a minor degree of phase nucleation. This finding is confirmed by advanced sampling simulations that calculate nucleation free energy as a function of the degree of nucleation and anisotropy. We also show that asymmetric tension, controlled by the number of PL molecules on each membrane leaflet, determines the budding direction. A TG lens buds in the direction of the monolayer containing excess PL molecules to allow for better PL coverage of TG, consistent with the reported experiments. Finally, two governing mechanisms of the LD growth, Ostwald ripening and merging, are observed. Taken together, this study characterizes the interplay between two thermodynamic quantities during the initial LD phases, the TG bulk free energy and membrane remodeling energy.

摘要

脂滴 (LDs) 是由磷脂 (PL) 单层包围的中性脂质储存细胞器。LD 由内质网起源,由中性脂质的相分离驱动,克服表面张力和膜变形。然而,LD 形成的初始步骤的核心生物物理学仍然相对理解较少。在这里,我们使用可调谐的、唯象的粗粒化模型来研究双层膜中的三酰基甘油 (TG) 成核。我们表明 PL 刚性对 TG 成核和膜重塑有很大影响:当膜刚性增加时,TG 团簇保持更平面的状态,具有较高的各向异性,但成核程度较小。这一发现通过高级采样模拟得到了证实,该模拟计算了成核自由能作为成核程度和各向异性的函数。我们还表明,由每个膜叶上的 PL 分子数量控制的不对称张力决定了出芽的方向。TG 透镜在含有过量 PL 分子的单层中出芽,以允许更好地覆盖 TG,这与报道的实验一致。最后,观察到两种控制 LD 生长的机制,奥斯特瓦尔德熟化和合并。总之,这项研究描述了初始 LD 阶段两种热力学量之间的相互作用,即 TG 体自由能和膜重塑能。

相似文献

1
Key Factors Governing Initial Stages of Lipid Droplet Formation.
J Phys Chem B. 2022 Jan 20;126(2):453-462. doi: 10.1021/acs.jpcb.1c09683. Epub 2022 Jan 6.
2
ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation.
Dev Cell. 2017 Jun 19;41(6):591-604.e7. doi: 10.1016/j.devcel.2017.05.012. Epub 2017 Jun 1.
3
Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis.
J Phys Chem B. 2021 Jul 1;125(25):6874-6888. doi: 10.1021/acs.jpcb.1c03559. Epub 2021 Jun 17.
4
The Surface and Hydration Properties of Lipid Droplets.
Biophys J. 2020 Nov 17;119(10):1958-1969. doi: 10.1016/j.bpj.2020.10.001. Epub 2020 Oct 14.
6
Lipid Droplet Nucleation.
Trends Cell Biol. 2021 Feb;31(2):108-118. doi: 10.1016/j.tcb.2020.11.006. Epub 2020 Dec 5.
7
Computational Studies of Lipid Droplets.
J Phys Chem B. 2022 Mar 24;126(11):2145-2154. doi: 10.1021/acs.jpcb.2c00292. Epub 2022 Mar 9.
8
Stressed Lipid Droplets: How Neutral Lipids Relieve Surface Tension and Membrane Expansion Drives Protein Association.
J Phys Chem B. 2021 Jun 3;125(21):5572-5586. doi: 10.1021/acs.jpcb.1c01795. Epub 2021 May 20.
9
An Asymmetry in Monolayer Tension Regulates Lipid Droplet Budding Direction.
Biophys J. 2018 Feb 6;114(3):631-640. doi: 10.1016/j.bpj.2017.12.014.
10
The physics of lipid droplet nucleation, growth and budding.
Biochim Biophys Acta. 2016 Aug;1861(8 Pt A):715-22. doi: 10.1016/j.bbalip.2016.04.018. Epub 2016 Apr 27.

引用本文的文献

1
Dynamical modelling of lipid droplet formation suggests a key function of membrane phospholipids.
FEBS J. 2025 Jan;292(1):206-225. doi: 10.1111/febs.17238. Epub 2024 Aug 12.
2
Cell lipid biology in infections: an overview.
Front Cell Infect Microbiol. 2023 Oct 6;13:1148383. doi: 10.3389/fcimb.2023.1148383. eCollection 2023.
3
Seipin-still a mysterious protein?
Front Cell Dev Biol. 2023 Feb 3;11:1112954. doi: 10.3389/fcell.2023.1112954. eCollection 2023.
5
Self-Assembly of Lipid Mixtures in Solutions: Structures, Dynamics Processes and Mechanical Properties.
Membranes (Basel). 2022 Jul 23;12(8):730. doi: 10.3390/membranes12080730.
7
Computational Studies of Lipid Droplets.
J Phys Chem B. 2022 Mar 24;126(11):2145-2154. doi: 10.1021/acs.jpcb.2c00292. Epub 2022 Mar 9.

本文引用的文献

1
Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis.
J Phys Chem B. 2021 Jul 1;125(25):6874-6888. doi: 10.1021/acs.jpcb.1c03559. Epub 2021 Jun 17.
3
Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2017205118.
5
Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane.
PLoS Biol. 2021 Jan 22;19(1):e3000998. doi: 10.1371/journal.pbio.3000998. eCollection 2021 Jan.
6
Fat inclusions strongly alter membrane mechanics.
Biophys J. 2021 Feb 16;120(4):607-617. doi: 10.1016/j.bpj.2021.01.009. Epub 2021 Jan 16.
7
Membrane Curvature Catalyzes Lipid Droplet Assembly.
Curr Biol. 2020 Jul 6;30(13):2481-2494.e6. doi: 10.1016/j.cub.2020.04.066. Epub 2020 May 21.
8
Neutral lipids regulate amphipathic helix affinity for model lipid droplets.
J Cell Biol. 2020 Apr 6;219(4). doi: 10.1083/jcb.201907099.
9
To Bud or Not to Bud: A Perspective on Molecular Simulations of Lipid Droplet Budding.
Front Mol Biosci. 2019 Nov 13;6:124. doi: 10.3389/fmolb.2019.00124. eCollection 2019.
10
LDAF1 and Seipin Form a Lipid Droplet Assembly Complex.
Dev Cell. 2019 Dec 2;51(5):551-563.e7. doi: 10.1016/j.devcel.2019.10.006. Epub 2019 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验