Suppr超能文献

基于深度学习重建的垂体薄层 MRI 对垂体瘤侵袭海绵窦的术前预测:一项前瞻性研究。

Thin-Slice Pituitary MRI with Deep Learning-Based Reconstruction for Preoperative Prediction of Cavernous Sinus Invasion by Pituitary Adenoma: A Prospective Study.

机构信息

From the Department of Radiology and Research Institute of Radiology (M.K., H.S.K., J.E.P., S.J.K.).

From the Department of Radiology and Research Institute of Radiology (M.K., H.S.K., J.E.P., S.J.K.)

出版信息

AJNR Am J Neuroradiol. 2022 Feb;43(2):280-285. doi: 10.3174/ajnr.A7387. Epub 2022 Jan 6.

Abstract

BACKGROUND AND PURPOSE

Accurate radiologic prediction of cavernous sinus invasion by pituitary adenoma remains challenging. We aimed to assess whether 1-mm-slice-thickness MRI with deep learning-based reconstruction can better predict cavernous sinus invasion by pituitary adenoma preoperatively and to estimate the depth of invasion and degree of contact in relation to the carotid artery, compared with 3-mm-slice-thickness MRI.

MATERIALS AND METHODS

This single-institution, prospective study included 67 consecutive patients (mean age, 53 [SD, 12] years; 28 women), between January and August 2020, who underwent a combined contrast-enhanced T1-weighted imaging protocol of 1-mm-slice-thickness MRI + deep learning-based reconstruction and 3-mm-slice-thickness MRI. An expert neuroradiologist who was blinded to the imaging protocol determined cavernous sinus invasion using the modified Knosp classification on 1-mm-slice-thickness MRI + deep learning-based reconstruction and 3-mm-slice-thickness MRI, respectively. Reference standards were established by the consensus of radiologic, intraoperative, pathologic, and laboratory findings. The primary end point was the diagnostic performance of each imaging protocol, and the secondary end points included depth of invasion and degree of contact in relation to the carotid artery.

RESULTS

The diagnostic performance of 1-mm-slice-thickness MRI + deep learning-based reconstruction (area under the curve, 0.79; 95% CI, 0.69 - 0.89) in predicting cavernous sinus invasion by pituitary adenoma was higher than that of 3-mm-slice-thickness MRI (area under the curve, 0.61; 95% CI, 0.52-0.70; < .001). One-millimeter-slice-thickness MRI + deep learning-based reconstruction demonstrated greater depth of invasion by pituitary adenomas from the medial intercarotid line than 3-mm-slice-thickness MRI (4.07 versus 3.12 mm, < .001). A higher proportion of cases were in a greater degree of contact with the intracavernous ICA with 1-mm-slice-thickness MRI + deep learning-based reconstruction than with 3-mm-slice-thickness MRI (total encasement, 37.3% versus 13.4%, < .001; >270°, 38.8% versus 16.4%, < .001).

CONCLUSIONS

Compared with 3-mm-slice-thickness MRI, 1-mm-slice-thickness MRI + deep learning-based reconstruction showed a higher diagnostic performance in preoperatively predicting cavernous sinus invasion by pituitary adenomas and demonstrated a greater depth and degree of contact in relation to the carotid artery.

摘要

背景与目的

准确预测垂体腺瘤对海绵窦的侵袭仍然具有挑战性。我们旨在评估与 3 毫米层厚 MRI 相比,基于深度学习的重建 1 毫米层厚 MRI 是否能更好地预测垂体腺瘤术前对海绵窦的侵袭,并估计与颈内动脉相关的侵袭深度和接触程度。

材料与方法

这是一项单中心前瞻性研究,纳入了 2020 年 1 月至 8 月间连续 67 例(平均年龄 53 [标准差 12]岁,28 例女性)患者,均接受了 1 毫米层厚 MRI+基于深度学习的重建联合对比增强 T1 加权成像方案和 3 毫米层厚 MRI 检查。一位对成像方案不知情的专家神经放射科医师分别使用改良的 Knosp 分类标准,对 1 毫米层厚 MRI+基于深度学习的重建和 3 毫米层厚 MRI 进行海绵窦侵袭的评估。参考标准由影像学、术中、病理和实验室检查结果的共识建立。主要终点是每个成像方案的诊断性能,次要终点包括与颈内动脉相关的侵袭深度和接触程度。

结果

在预测垂体腺瘤对海绵窦的侵袭方面,1 毫米层厚 MRI+基于深度学习的重建(曲线下面积 0.79;95%CI 0.69-0.89)的诊断性能高于 3 毫米层厚 MRI(曲线下面积 0.61;95%CI 0.52-0.70;<.001)。1 毫米层厚 MRI+基于深度学习的重建显示,垂体腺瘤从内侧颈内动脉线侵入海绵窦的深度大于 3 毫米层厚 MRI(4.07 毫米比 3.12 毫米;<.001)。使用 1 毫米层厚 MRI+基于深度学习的重建,更多的病例与海绵窦内颈内动脉接触程度更大(完全包绕,37.3%比 13.4%;<.001;>270°,38.8%比 16.4%;<.001)。

结论

与 3 毫米层厚 MRI 相比,1 毫米层厚 MRI+基于深度学习的重建在术前预测垂体腺瘤对海绵窦的侵袭方面显示出更高的诊断性能,并且与颈内动脉相关的侵袭深度和接触程度更大。

相似文献

7
MRI 3D SPACE T2WI for Pituitary Adenoma Cavernous Sinus Invasion Diagnosis.MRI 3D SPACE T2WI 用于垂体腺瘤海绵窦侵袭诊断。
World Neurosurg. 2024 May;185:e1257-e1267. doi: 10.1016/j.wneu.2024.03.066. Epub 2024 Mar 19.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验