Ruff Christer, Bombach Paula, Roder Constantin, Weinbrenner Eliane, Artzner Christoph, Zerweck Leonie, Paulsen Frank, Hauser Till-Karsten, Ernemann Ulrike, Gohla Georg
Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany.
Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Tuebingen D-72076, Germany.
Eur J Radiol Open. 2024 Dec 4;13:100617. doi: 10.1016/j.ejro.2024.100617. eCollection 2024 Dec.
Diagnostic accuracy and therapeutic decision-making for IDH-mutant gliomas in tumor board reviews are based on MRI and multidisciplinary interactions.
This study explores the feasibility of deep learning-based reconstruction (DLR) in MRI for IDH-mutant gliomas. The research utilizes a multidisciplinary approach, engaging neuroradiologists, neurosurgeons, neuro-oncologists, and radiotherapists to evaluate qualitative aspects of DLR and conventional reconstructed (CR) sequences. Furthermore, quantitative image quality and tumor volumes according to Response Assessment in Neuro-Oncology (RANO) 2.0 standards were assessed.
All DLR sequences consistently outperformed CR sequences (median of 4 for all) in qualitative image quality across all raters (p < 0.001 for all) and revealed higher SNR and CNR values (p < 0.001 for all). Preference for all DLR over CR was overwhelming, with ratings of 84 % from the neuroradiologist, 100 % from the neurosurgeon, 92 % from the neuro-oncologist, and 84 % from the radiation oncologist. The RANO 2.0 compliant measurements showed no significant difference between the CR and DRL sequences (p = 0.142).
This study demonstrates the clinical feasibility of DLR in MR imaging of IDH-mutant gliomas, with significant time savings of 29.6 % on average and non-inferior image quality to CR. DLR sequences received strong multidisciplinary preference, underscoring their potential for enhancing neuro-oncological decision-making and suitability for clinical implementation.
在肿瘤专家会诊中,异柠檬酸脱氢酶(IDH)突变型胶质瘤的诊断准确性和治疗决策基于磁共振成像(MRI)及多学科协作。
本研究探讨基于深度学习的重建(DLR)在IDH突变型胶质瘤MRI中的可行性。该研究采用多学科方法,让神经放射科医生、神经外科医生、神经肿瘤学家和放射肿瘤学家评估DLR和传统重建(CR)序列的定性方面。此外,根据神经肿瘤学疗效评估(RANO)2.0标准评估定量图像质量和肿瘤体积。
在所有评估者中,所有DLR序列在定性图像质量方面均持续优于CR序列(所有评估者的中位数均为4)(所有p值均<0.001),并显示出更高的信噪比(SNR)和对比噪声比(CNR)值(所有p值均<0.001)。对所有DLR序列的偏好压倒性地高于CR序列,神经放射科医生的评分为84%,神经外科医生为100%,神经肿瘤学家为92%,放射肿瘤学家为84%。符合RANO 2.0标准的测量结果显示,CR序列和DRL序列之间无显著差异(p = 0.142)。
本研究证明了DLR在IDH突变型胶质瘤MR成像中的临床可行性,平均可显著节省29.6%的时间,且图像质量不低于CR序列。DLR序列获得了多学科的强烈偏好,凸显了其在增强神经肿瘤学决策方面的潜力以及临床应用的适用性。