Suppr超能文献

将 解构为产乙酸古菌。

Deconstructing into an acetogenic archaeon.

机构信息

Institute of Microbiology, Technische Universität Dresden, 01062 Dresden, Germany.

Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany.

出版信息

Proc Natl Acad Sci U S A. 2022 Jan 11;119(2). doi: 10.1073/pnas.2113853119.

Abstract

The reductive acetyl-coenzyme A (acetyl-CoA) pathway, whereby carbon dioxide is sequentially reduced to acetyl-CoA via coenzyme-bound C1 intermediates, is the only autotrophic pathway that can at the same time be the means for energy conservation. A conceptually similar metabolism and a key process in the global carbon cycle is methanogenesis, the biogenic formation of methane. All known methanogenic archaea depend on methanogenesis to sustain growth and use the reductive acetyl-CoA pathway for autotrophic carbon fixation. Here, we converted a methanogen into an acetogen and show that can dispense with methanogenesis for energy conservation completely. By targeted disruption of the methanogenic pathway, followed by adaptive evolution, a strain was created that sustained growth via carbon monoxide-dependent acetogenesis. A minute flux (less than 0.2% of the carbon monoxide consumed) through the methane-liberating reaction remained essential, indicating that currently living methanogens utilize metabolites of this reaction also for anabolic purposes. These results suggest that the metabolic flexibility of methanogenic archaea might be much greater than currently known. Also, our ability to deconstruct a methanogen into an acetogen by merely removing cellular functions provides experimental support for the notion that methanogenesis could have evolved from the reductive acetyl-coenzyme A pathway.

摘要

还原性乙酰辅酶 A(acetyl-CoA)途径,通过辅酶结合的 C1 中间体将二氧化碳逐步还原为乙酰辅酶 A,是唯一能够同时作为能量守恒手段的自养途径。概念上类似的代谢途径和全球碳循环中的关键过程是产甲烷作用,即甲烷的生物形成。所有已知的产甲烷古菌都依赖产甲烷作用来维持生长,并利用还原性乙酰辅酶 A 途径进行自养碳固定。在这里,我们将一种产甲烷菌转化为产乙酸菌,并表明 可以完全不需要产甲烷作用来进行能量守恒。通过靶向破坏产甲烷途径,然后进行适应性进化,创建了一种通过依赖一氧化碳的产乙酸作用来维持生长的菌株。通过甲烷释放反应的微小通量(消耗的一氧化碳的不到 0.2%)仍然是必需的,这表明目前生活的产甲烷菌也将该反应的代谢物用于合成代谢目的。这些结果表明,产甲烷古菌的代谢灵活性可能比目前已知的要大得多。此外,我们通过仅仅去除细胞功能将产甲烷菌解构为产乙酸菌的能力为产甲烷作用可能是从还原性乙酰辅酶 A 途径进化而来的观点提供了实验支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4110/8764690/7cec06e03833/pnas.2113853119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验